Abstract

The Boltzmann equation provides high fidelity simulation of a
diverse range of kinetic systems. A common application of this
equation is to simulate neutral particie transport. An
interdisciplinary team developed a novel algorithm,
Quasi-Diffusion Accelerated Monte Carlo (QDA-MC), to solve the
neutron transport equation. The algorithm decouples particle
scattering and absorption to dramatically reduce the complexity of
the stochastic simulation. The change provides good scalability
and performance in both traditional multi-core/ many-node
architectures and GPU-accelerated architectures. While we focus
only on a one-dimensional system in this study, the lessons
learned will be largely applicable to multi-dimensional systems as
well.

Co-Design, What and Why?

» Traditional Scientific Code Development entails

» Computational Scientist develop the code to reflect the physics
of the problem

» Followed by architecture specific optimization by the Computer
Scientists and Engineers

» Frequently, fundamental algorithmic changes might be needed to
get the best performance.

» Computer Scientists lack the specific understanding of the
scientific domain to realize that such changes are feasibie.

» A continued discussion process between computer scientists and
computational scientists can incorporate algorithimic changes in
the development process to get the best performance for different
architectures.

1D Transport Equation

9o
uc’?x

(%, 1) + Zab(x, 1) = 5 [Es(x) + Q)]

» 1 is called the angular flux

» ¢ is called the scalar flux

» L is the scattering
cross-section

» X 4 is the absorption
cross-section

» Yt = Y5+ L,is the total
cross-section

» Qis afixed source

» i is called the direction
cosine

Classic Monte Carlo

Uses random sampling to determine how a sequence of events
takes place. Can be used to solve the transport equation:
» Basic Algorithm:
1. Source term, Q(x) to determine particle starting locations,
initial particle weight, direction and distance travelled.
2. Determine whether particle is scattered or absorbed. If
scattered, return to Step (2). Otherwise, end particle history.
3. After particle simulation, tally angular and scalar flux.
» Disadvantages:
May need billions of particles to converge, contain statistical noise,
scattering of particles introduces thread divergence on GPUs.

Quasi Diffusion Accelerated Monte Carlo (QDA-MC)

A novel iterative algorithm for the transport equation.

,HO 1
A i ruo=3(1404Q) (HO)

8 —19EHOHLO
L o SN Y, — fLO
Ber, on Tor ek =ar 8
» Higher Order (HO): Stochastic soiution in a purely absorbing
medium
» Lower Order (LO): Deterministic approach to handle the scattering

QDA-MC Minimizes thread-divergence.

MC Component Convert Data

Generate
Particle Data

A

Accumulate
Tallies from
All Nodes

Solve
PDE

Deterministic

Test Case

T Referencs Solution LDG
o - 6

CHC Solution F: L2 = 210 1, 10210 Flights
e E 3

QDAHC Solution f3 L2 = 2310 1, 0.,4x10° Flights

UG Salution £ 12 = 1.5 2, 117d0” Flights

Test Results: 1, =10, X = 100

[%=00 T ¥,=999 | ¥,=9999 |
[“CMC [QDAMC| CMC [QDAMC| CMC [QDAMC|
CPU Time| 75.65 2 358.2] 144 | 843 | 1.53

Flights _|3.908¢6 19e6| 5e5 [43.866] 5.565 |
Collisions| 98.7 | 1 973.6] 1 8945.9 1
lterations | 396 | 11 196 | 10 | 49 11

ote: For CMC we use particles per cycle and for MC we use 50,000
particles per cycle.

Multicore CPU

» High frequency, deep cache
hierarchies, large but slow
main memory.

» Run parallel processes for
generation/tally of particles,
reduce tallies at the end.

» Implemented both MPI and
OpenMP version for
distributed and shared
memory systems
respectively.

OPENMP and MPI Results

GPU Optimizations

» QDAMC has massive
thread-level parallelism and
minimal thread divergence.
Well suited for GPUs

» Particle generation and
tallying on the GPU

» Lower order system solved
on the CPU

» The tallies done in “order” to
reduce synchromization
costs

GPU RESULTS

Conclusion

» The algorithmic change makes the Monte-Carlo step of QDAMC
less thread divergent
» Good scalability seen with OpenMP and MPI
» Reduced thread divergence on GPUs, but synchronization costs
for tallying still high
» For problems in higher dimensions
~ Complexity of Lower order system would increase. Might be
more efficient to parallelize this step.
» A hybrid OpenMP-MPI system might be more efficient in terms
of memory footprint for larger problems
» For CPU-GPU architectures, need to overlap computation on
CPU and GPU for good performance. Further algorithmic
changes to be considered.

Bibliography and Acknowledgements

