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Exascale computing presents an enormous opportunity for solving some of
today’s most pressing problems, including clean energy production, nuclear
reactor lifetime extension, and nuclear stockpile aging. At their core, each of
these problems requires the prediction of material response to extreme
environments. Our Center’s objective is to establish the interrelationship
between software and hardware required for materials simulation at the
exascale while developing a multiphysics simulation framework for modeling
materials subjected to extreme mechanical and radiation environments.

Co-Design and a Multi-Disciplinary Approach
Co-Design is the blurring of the user and designer. By ensuring that the
users of the system are the ones designing it, the quality of the design
increases as unnecessary features are culled and the researcher is able to
ensure required functionality.

This summer school used a multi-disciplinary approach consisting of
student interns trained in physics and computer science to develop a
solution of the problem while using efficient computing techniques.
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0 Goal: non-oscillatory high-
resolution scheme for two-
dimensional hyperbolic
conservation laws to simulate
shockwave propagation in the
non-linear response regime

O Method: finite volume macro
solver models the evolution in
time and space of a coupled
system of PDEs:

9,A —onv =0
d,q9 —on'a=0
Pde=Voj =0

0 Multi-Scale approach: finite
volume method calls MD
simulation with input parameters
strain A, momentum density g,
and energy density e. The stress o,
and the energy density flux j is
then evaluated on the microscopic
level and is given back to the
macro solver.

2D Macrosolver

Error Analysis

Identifying The Bottlenecks
We developed a synthetic benchmark with OpenMP to identify where our
time would best be spent

Execution Time of Synthetlc OpenMP Benchmark
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Clearly, our goal is to maximize parallelism and reduce the number of calls
to the MD simulator while maintaining a high degree of accuracy.

Runtime and Programming Model
Requirements:
U No Emphasis on Locality
U Support for Distributed Systems
O Runtime-managed Job Scheduling and Load Balancing
O Resilience
O Potential for High Scalability

Runtime |Developer |Advantages Disadvantages

Scioto Ohio State Load balances asynchronous tasks  Early development
University uses Global Arrays for PGAS

Spark AMPLab Highly resilient framework for Full cluster

in-memory cloud computing computing system

No distributed load
balancing

Swarm ET
International

Codelet based model with proven
performance

Pathos Mike

McKerns

Uses map-reduce to distribute tasks High overhead
via MPI

The block average analysis enables to
quantify the uncertainty of the
microscopic simulations, that can
then be set to match the sensitivity of
higher level simulations.

Block Analysis
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O To estimate the sensitivity of the
macroscopic simulations we use an
analytical response of the finer
level with a Gaussian noise.

O The size and length of the
molecular dynamics microscopic
simulations is set accordingly, with
respect to the potential used.

Example of the two dimensional
macro solver, with two shock fronts
evolving through the system. The
picture shows the total strain in the
simulation after a couple of time
steps.

For this simple example of 50x50
grid points, the Molecular dynamics
(CoMD) has to be called 2500 times.
/In order to compute a single time
step at macro level, we need to
execute this operation 4 times.

Adaptive Mesh

Mesh coarsening Mesh refinement
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Our first level of adaptive mesh uses On a second level of mesh adaptivity,
a fine grid everywhere and coarsen it the results from the microscopic
where there is no need for precise level are interpolated. Microscopic
computation. The grid is left at its simulations are spawned where the
initial finest where the shock front interpolation requires more data to
passes, and is coarsened away from be effective. This grid refining
the shock front. approach considers microscopic
outputs only, allowing numerical
experiments where the relation
between the simulation levels is
unpredictable.

Comparison of Runtime Performance
For performance and time purposes, we chose to compare the
performance of a traditional model, Scioto, and a less traditional
framework, Spark. Both achieved similar performance

Spark vs. Scioto
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All benchmarks were run for 30 steps at the macrosolver level on LANL's
Darwin Cluster using 48 cores per node with visualization disabled and the
number of grid points specified in the graph. Each grid point contained an
MD simulation with 864 particles that converged after 1000 steps. The
described Adaptive Mesh Refinement technique was used.
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Fault Tolerance
As we approach the exascale era, system faults become a real possibility.
We take a two-pronged approach to fault tolerance:

O Task Level
o One or more nodes go down, but simulation continues
o Failed MD simulations are restarted on remaining nodes
O Job Level
o Enough nodes go down that simulation stops
o Simulation state saved when visualizing output. Can recover
from saved state
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