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tyDomain Partitioning and Problem Space Representations for
Compact Binary Mergers
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Introduction

I Our project is a collaboration between computer and domain scientists to simulate binary neutron
star mergers

I Our starting point is the highly scalable 2HOT code

I Our algorithms of choice are smoothed particle hydrodynamics and the hashed octree data
structure

Physics Accomplishments
I Add Equation of State in 2HOT

I Generate realistic initial data for SPH code

I Add gravitational radiation-reaction

I Merge binary neutron stars

I Analyse the ejecta

Computer Science Accomplishments
I Improve the Equation of State lookup

I Improve the data distribution and the
structure generation

I Use and benchmark efficient runtimes with
a proxy application

Astrophysical Motivation

I Neutron stars (NS)
I Remnants of stellar core-collapse
I Compact objects supported against gravity

by the strong nuclear force and neutron
degeneracy pressure

I Density and electron fraction plotted to the
right
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I Binary NS mergers: observational signatures
I Gravitational waves (∼ 1057 erg/s in ∼ 1 ms)
I Short gamma-ray bursts (∼ 1050 erg/s in ∼ 0.2 s)
I Produced in ejecta, or unbound flow (plotted on the left):

I Infrared ”macronova/kilonova” transients
(∼ 1040 erg/s for ∼ 7 d)

I Radio transients (∼ 1050 erg over 5− 100 years)

I r-process nucleosynthesis
I Ejecta conducive to rapid neutron capture by

heavy-seed nuclei
I r-process may help explain abundance of heavy

elements in universe (residuals plotted to the
right).

I “Kilonova” afterglow (faint supernova-like
transient) powered by radioactive decay of freshly
synthesized heavy elements

1. Nucleosynthesis in neutron star merger ejecta

Nucleosynthesis parameters:

• nuclear heating fraction: εth = 0.5;
• NSE → network threshold: 8 GK;
• trajectory is extrapolated to tfinal = 106s;
• temperature is extrapolated using: T (t) = T0(t/t0)−1;
• density is extrapolated assuming uniform homologous expansion of spherical ejecta

with mass mej = 0.01M� and expansion velocity v = 0.11c.
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Smoothed Particle Hydrodynamics (SPH)

I Why? can handle deformations (mergers), low densities
(ejecta) and vacuum

I What? explicit numerical mesh-free method → solve
hydrodynamic PDE: Lagrangian, discretized in set of fluid
elements called “particles”

I How? their smooth field variables (density, velocity, internal
energy, pressure) and derivatives interpolated via smoothing
kernel W

〈A〉 (~r) ≈
∑
b

mb

ρb
A(~rb)W (|~r − ~rb|, h)

h smoothing length (hydro interaction range) evolved for each
particle (adaptive resolution)

I Equation of state (matter behavior) to close system

W

rr ≤ 2h

I Pros:
I Discretized form exactly conserves mass,

energy, linear & angular momentum ∀
resolutions

I Exactly advects fluid properties
I Easily combines with tree methods for

solving Newtonian gravity via N-body

I Cons:
I Special care must be taken when handling

high gradients (shocks, NS surface)
I Restricted to low-order convergence
I Can struggle to resolve turbulence

dominated flows
I Requires careful setup of initial

distribution of particles

2HOT: A Provenly Scalable Astrophysics Code

I 2HOT
I A highly-scalable N-body code
I Written by Mike Warren (originally

HOT)
I Based on:

I Multipole acceptance criterion
I Hashed octree data structure

I Later extended by Chris Fryer and
others to handle SPH (SNSPH)

I Computational time scales as O(n ln n).

I Our Additions
I Several realistic equations of state,

many of which are tabulated
I Gravitational wave radiation-reaction
I Realistic neutron star initial data
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A strong scaling test for a single neutron star
with 2 million particles.

Our Binary NS Mergers
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t = 9.98 ms t = 12 ms

t = 16 ms t = 20 ms

COOL is for Optimized Object Lookup

Nearest-neighbor search proxy application:


Key generation

Distributed particle sort

Tree construction

k-nearest neighbor search

I Uses the same data structures and algorithms as 2HOT

I Supports multiple domain decomposition schemes to improve data locality
I Makes additional development simpler

I Implemented in three runtimes:

MPI
I Very well known runtime

I Hard to get performance

I Useful as a baseline
comparison tool

STAPL
I Task-graph driven library

I STL-like containers and
algorithms

I Easy to read and write

Charm++
I Object-focused

asynchronous parallelism

I Efficient

I Mature

Domain Decomposition

I Distributed nearest-neighbor search is communication-bound

I The choice of domain decomposition affects the amount of communication required

I Domain decompositions from space-filling curves provide good locality and fast tree construction

I 2HOT only supports Morton-order decomposition

I COOL supports both Morton- and Hilbert-order domain decomposition

Morton-order Decomposition
I Simple algorithm for n dimensions

I Creates spatial discontinuities

I Can result in unnecessary communication

Hilbert-order Decomposition
I More complex to implement

I Algorithm varies by number of dimensions

I Preserves spatial locality within nodes

Morton Curve Hilbert Curve

Morton-order Decomposition Hilbert-order Decomposition

Morton- and Hilbert-order data decompositions for a uniformly randomly distributed cube of particles.
Particles are distributed among 512 nodes, which are colored with a rotating set of twelve colors. Spatial
discontinuities are colored black.
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Morton Order
Hilbert Order

Data locality for Morton- and Hilbert-order nearest-neighbor search for a uniformly randomly distributed
cube of one million particles. Hilbert-order decomposition results in a smaller average percentage of
remote neighbors, resulting in less communication during tree construction and nearest-neighbor search.

Morton-order Octree Hilbert-order Octree

Morton- and Hilbert-order octrees generated from a binary neutron star system, distributed over eight
nodes. Tree vertices and edges are colored by the node that owns them. The Morton octree has a high
degree of spatial discontinuity, with all nodes owning particles from each star.
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