
Performance Study and Optimization of FleCSALE using Tabular Equation of State
Dana Akhmetova, Sumathi Lakshmiranganatha, Diptajyoti Mukherjee, Frederick Ouellet, Patrick Payne, & Nicholas Stegmeier

Co-Design Summer School 2018

Introduction
Background
• Hydrodynamics codes require material specific thermodynamic

data, usually obtained with an analytic or tabular equation of
state (EOS)

• EOSPAC is a library that provides access to and interpolation
routines for material data tables

• FleCSALE is a continuum dynamics code that is built on the
FleCSI framework and uses EOSPAC

• FleCSI is a compile-time configurable framework designed to
support multi-physics application development

Objective
• Optimize FleCSALE in the context of EOSPAC by investigating:

EOSPAC library optimizations, hybrid programming for
FleCSALE, and FleCSI sparse data optimizations

• All scaling simulations were run on Broadwell CPUs to a
simulation time of 1.5s

Figure 1: Initial communication and computation breakdown of
FleCSALE

Strategies for EOSPAC
Optimizing the EOSPAC Interface
• SESAME data tables are inverted at initialization and stored
• Interpolations performed using groups of common material cells
• Sorted arrays passed to EOSPAC for interpolation

1 2 4 8 16 36
CPUs (36/node)

7

16
26
44

81

156

304

601

Ti
m

e 
(m

in
)

Strong Scaling Comparison
Original
Original Grouped
Inside Sort
Outside Sort
Linear Original

1 2 4 8 16 36
CPUs (36/node)

0.5

1.0

1.5

2.0

Sp
ee

du
p

Relative Speedup

Figure 2: Timing and performance data for FlecSALE runs with various
integration techniques. Inversion/grouping speeds up the code by a factor of
1.5, adding sorting increases it to a factor of 1.6-1.7

GPU Porting of EOSPAC Interpolation
• Interpolation algorithms are single threaded but easily

parallelizable
• Broadwell CPU and a Tesla P100 GPU used for performance runs

100 101 102 103 104 105 106

Number of elements to interpolate
10 1

100

101

102

103

Ti
m

e 
(s

)

Performance Comparison
CUDA Sync. Memcopy
CUDA Unified Memory
CUDA Host Pinned Memory
Broadwell CPU (Serial)

Figure 3: Timing data for 10,000
interpolation calls to EOSPAC

0 2000 4000 6000 8000 10000
Density (Mg/m^3)

105

106

107

Te
m

pe
ra

tu
re

 (
K)

Accuracy Comparison

10 17

10 16

10 15

10 14

Re
la

ti
ve

 d
iff

er
en

ce

Figure 4: Relative difference between
the serial and CUDA implementations

Machine Learning for Equation of State
• Machine learning was used to replace EOSPAC calls in FleCSALE
• DLIB C++ ML library offers kernel ridge regression (KRR) and

random forest (RF) regression models
• ML memory usage highly dependent on model

0.2 0.4 0.6 0.8 1.0
Density

0.6

0.8

1.0

1.2

1.4

1.6

In
te
rn
al
 E
ne
rg
y
Pressure Actual vs. ML Predicted

10 9

10 8

10 7

10 6

Er
ro
r

Figure 5: Absolute error of random
forest model compared to EOSPAC

Figure 6: Integration of KRR ML with
FleCSALE

OpenMP in FleCSALE
• OpenMP was used in outer for-loop work-sharing constructs in

FleCSALE tasks
• This was tested on Intel Haswell E5-2698 v3 (2 sockets, 16 cores

per socket, 2 threads per core, 64 logical cores in total) with a
200x81 mesh

1 2 4 8 16 32
Number of OpenMP threads

500

520

540

560

580

600

Ti
m

e 
(s

ec
)

Hybrid Programming with OpenMP

Figure 7: OpenMP performance results in FleCSALE

Sparse Data Optimization for FleCSI
• MPI Win create calls was the most

expensive ∼ 38% of the MPI
communication time

• Unnecessary data copies and shared
window creation was eliminated

• Shared window was created only at the
beginning of the execution

• MPI Datatype was used for shared ghost
cells to treat as a single message

Figure 8: MPI calls
breakdown

• Overall performance was improved by ∼ 80%

1 4 15 60 238
CPUs (36/node)

0

5

10

15

20

Ti
m

e 
(m

in
)

Weak Scaling Comparison
Multi-node
Original Code
MPI Sparse Data Opt.

1 4 15 60 238
CPUs (36/node)

1

2

3

4

5

Sp
ee

dU
p

Relative Speedup

Figure 9: Weak scaling graph for FleCSALE with relative speedup

Figure 10: Strong scaling graph for FleCSALE with relative speedup

Summary and Future Work
• Sparse data optimizations for FleCSI show ∼5x speedup, but

further investigation is required for MPI one-sided communication
• CUDA results are promising, but still require integration with

FleCSALE
• Initial machine learning integration was able to reproduce the

expected results

Los Alamos National Laboratory LA-UR-18-27165


