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Introduction

Background

e Hydrodynamics codes require material specific thermodynamic
data, usually obtained with an analytic or tabular equation of
state (EOS)

e EOSPAC is a library that provides access to and interpolation
routines for material data tables

e FleCSALE is a continuum dynamics code that is built on the

FleCSI| framework and uses EOSPAC

e FleCSl is a compile-time configurable framework designed to
support multi-physics application development

Objective
e Optimize FIeCSALE in the context of EOSPAC by investigating:
EOSPAC library optimizations, hybrid programming for
FleCSALE, and FleCSl sparse data optimizations

e All scaling simulations were run on Broadwell CPUs to a
simulation time of 1.5s
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Figure 1: Initial communication and computation breakdown of
FleCSALE

Strategies for EOSPAC

Optimizing the EOSPAC Interface
o SESAME data tables are inverted at initialization and stored

e Interpolations performed using groups of common material cells

e Sorted arrays passed to EOSPAC for interpolation

Strong Scaling Comparison Relative Speedup
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Figure 2: Timing and performance data for FlecSALE runs with various
integration techniques. Inversion/grouping speeds up the code by a factor of
1.5, adding sorting increases it to a factor of 1.6-1.7
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GPU Porting of EOSPAC Interpolation

e Interpolation algorithms are single threaded but easily
parallelizable

e Broadwell CPU and a Tesla P100 GPU used for performance runs
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Figure 3: Timing data for 10,000
interpolation calls to EOSPAC

Machine Learning for Equation of State

e Machine learning was used to replace EOSPAC calls in FleCSALE

e DLIB C++ ML library offers kernel ridge regression (KRR) and
random forest (RF) regression models

e ML memory usage highly dependent on model
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Figure 5: Absolute error of random Figure 6: Integration of KRR ML with
forest model compared to EOSPAC  FleCSALE

OpenMP in FleCSALE

e OpenMP was used in outer for-loop work-sharing constructs in
FleCSALE tasks

e This was tested on Intel Haswell E5-2698 v3 (2 sockets, 16 cores

per socket, 2 threads per core, 64 logical cores in total) with a
200x81 mesh

Hybrid Programming with OpenMP
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Figure 7: OpenMP performance results in FleCSALE
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Figure 4: Relative difference between
the serial and CUDA implementations
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Sparse Data Optimization for FleCSI
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communication time
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Figure 8: MPI calls
breakdown

Overall performance was improved by ~ 80%

Weak Scaling Comparison
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Figure 9: Weak scaling graph for FleCSALE with relative speedup
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Figure 10: Strong scaling graph for FleCSALE with relative speedup

Summary and Future Work

Sparse data optimizations for FleCSI show ~5x speedup, but
further investigation is required for MPI| one-sided communication

CUDA results are promising, but still require integration with
FleCSALE

Initial machine learning integration was able to reproduce the
expected results
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