e

75 Los Alamos

NATIONAL LABORATORY
EST.1943

Introduction

Background

e Hydrodynamics codes require material specific thermodynamic
data, usually obtained with an analytic or tabular equation of
state (EOS)

e EOSPAC is a library that provides access to and interpolation
routines for material data tables

e FleCSALE is a continuum dynamics code that is built on the

FleCSI| framework and uses EOSPAC

e FleCSl is a compile-time configurable framework designed to
support multi-physics application development

Objective
e Optimize FIeCSALE in the context of EOSPAC by investigating:
EOSPAC library optimizations, hybrid programming for
FleCSALE, and FleCSl sparse data optimizations

e All scaling simulations were run on Broadwell CPUs to a
simulation time of 1.5s

Computation Breakdown

Overall Breakdown
MPI calls

74% i
eos::interpolate

65%

0,
= A)other

evaluate nodal state

Computation

Figure 1: Initial communication and computation breakdown of
FleCSALE

Strategies for EOSPAC

Optimizing the EOSPAC Interface
o SESAME data tables are inverted at initialization and stored

e Interpolations performed using groups of common material cells

e Sorted arrays passed to EOSPAC for interpolation

Strong Scaling Comparison Relative Speedup

—@— QOriginal
| —#— QOriginal Grouped
601 —#— |nside Sort 2.0
—&— QOutside Sort
304 - — = Linear Original

Time (min)

1 2 a 8 16 36
CPUs (36/node)

CPUs (36/node)

Figure 2: Timing and performance data for FlecSALE runs with various
integration techniques. Inversion/grouping speeds up the code by a factor of
1.5, adding sorting increases it to a factor of 1.6-1.7

Co-Design Summer School 2018

GPU Porting of EOSPAC Interpolation

e Interpolation algorithms are single threaded but easily
parallelizable

e Broadwell CPU and a Tesla P100 GPU used for performance runs

Performance Comparison

m@== CUDA Sync. Memcopy
1 == CUDA Unified Memory
= = CUDA Host Pinned Memory
mmmm Broadwell CPU (Serial)

10714

. Accuracy Comparison

102 -

101 7 106 __ R : : : :

Time (s)

o 10—16
10° E

Temperature (K)
Relative difference

“
s ®
.
.

10_1 — N N R S — 105 L n | A : i : .,Ir et I LR . __10_17
10° 10! 10? 103 104 10° 10© 0 2000 4000 6000 8000 10000

Number of elements to interpolate Density (Mg/m~ 3)

Figure 3: Timing data for 10,000
interpolation calls to EOSPAC

Machine Learning for Equation of State

e Machine learning was used to replace EOSPAC calls in FleCSALE

e DLIB C++ ML library offers kernel ridge regression (KRR) and
random forest (RF) regression models

e ML memory usage highly dependent on model

1 gressure Atal VS. ML Prdctd

TN N llo_s Density EOSPAC vs. ML
1. 2.5
>
% 1 -1077 2
£ . 2
w o 5
© . - o 1.5
E 1. i M i L Pa v
Q 108
ol
E] |
== Density EOSPAC 200x81
_ 0.5 = :Density ML 200x81
0.61 10-° = _ |=rvonsily WL 2OVXOT
05 1 15 2 25 3 35 4 45
0.2 0.4 0.6 0.8 1.0 X

Density

Figure 5: Absolute error of random Figure 6: Integration of KRR ML with
forest model compared to EOSPAC FleCSALE

OpenMP in FleCSALE

e OpenMP was used in outer for-loop work-sharing constructs in
FleCSALE tasks

e This was tested on Intel Haswell E5-2698 v3 (2 sockets, 16 cores

per socket, 2 threads per core, 64 logical cores in total) with a
200x81 mesh

Hybrid Programming with OpenMP

600 -

Time (sec)
Ul Ul
o 00
(=) (=

&)
=Y
o

Ul
N
(=)

5001 . : ﬂ
12 4 8 16 32
Number of OpenMP threads

Figure 7: OpenMP performance results in FleCSALE

Los Alamos National Laboratory

Figure 4: Relative difference between
the serial and CUDA implementations

Performance Study and Optimization of FleCSALE using Tabular Equation of State

Dana Akhmetova, Sumathi Lakshmiranganatha, Diptajyoti Mukherjee, Frederick Ouellet, Patrick Payne, & Nicholas Stegmeler

NYSE

MNatonal Nuclear Security Admimsiraiion

Sparse Data Optimization for FleCSI

MPI Win create calls was the most

expensive ~ 38% of the MPI

communication time

Unnecessary data copies and shared MPLWin complete

window creation was eliminated
Shared window was created only at the oot S e
- 13%

beginning of the execution MPL Wi fee

MPI Datatype was used for shared ghost
cells to treat as a single message

MPI Win_create
38%

Figure 8: MPI calls
breakdown

Overall performance was improved by ~ 80%

Weak Scaling Comparison

—=- Multi-node
20- —#— Original Code
-—#—- MPI Sparse Data Opt.

Relative Speedup

=
9

Time (min)
(=]
()

1 4 15 60 238 1 4 15 60 238
CPUs (36/node) CPUs (36/node)

Figure 9: Weak scaling graph for FleCSALE with relative speedup

Strong Scaling Comparison Relative Speedup

—&— Original Code

—a—- MPI Sparse Data Opt. ML 3
91 - —&— MPI Sparse Data Opt. Grouped
—=- Linear Original
| \ - =« Multi-node
55 . 4l
E 341 : (o1
= I =
E21 | 5
' 3
)
14 ' é:_
i= 10- |
7 I
| 2
4 - .
\\ I
Y|
% 1-
1 2 4 8 16 36 72 144 288 1 2 4 8 16 36 72 144 288

CPUs (36/node) CPUs (36/node)

Figure 10: Strong scaling graph for FleCSALE with relative speedup

Summary and Future Work

Sparse data optimizations for FleCSI show ~5x speedup, but
further investigation is required for MPI| one-sided communication

CUDA results are promising, but still require integration with
FleCSALE

Initial machine learning integration was able to reproduce the
expected results

\

Z \

el ¥ ISTI

INFORMATION SCIE%\TCE & TECHNOLOGY INSTITUTE

LA-UR-18-27165

