
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Transformations for Energy Efficient Accelerated Chain Matrix Multiplication (TEE-ACM2)
Maxim Moraru1, Mina Warnet1, Julien Loiseau2, Vinay Ramakrishnaiah2, Nirmal Prajapati2, Hyun Lim2, Robert Pavel2, Sumathi Lakshmiranganatha2,

Jamal Mohd-Yusof2, Andrew Reisner2, Karen Tsai2, Richard Berger2, Patrick McCormick2
1University of Reims, 2Los Alamos National Laboratory

Matrix Chain Multiplication plays a key role in the training of deep learning models. They
also appear in physics, computer graphics, image processing, etc. Matrix Multiplications often
cause a bottleneck in terms of performance and energy because of the heavy costs in
computations and memory operations. While the runtime performance has been studied for
years, significantly less effort has been expended in optimizing its energy efficiency. Thus,
reducing the energy cost of these types of computations is a major challenge.
The study of balancing energy efficiency and execution time at a data center scale could have a
positive environmental impact.

Matrix Chain Multiplication
• Problem: Given a sequence of matrices {A1, A2, ... An} with sizes {P0, P1, ... Pn} , compute ∏!"#

$ 𝐴𝑘
• Multiplication order can significantly impact the performance of the algorithm

• The Optimal Parenthesization (OP_Count) algorithm in “Cormen et al. Introduction to
Algorithms.” outputs an order of matrix multiplications that minimizes the total number of
operations.

Energy Efficient GPU implementation

Introduction
Tools used for power measurements
Software
• Nvidia Management Library (NVML)
Hardware
• Power Capture Analysis Tool (PCAT)

Comparison of hardware and software power measurements

• We observed less than 3% difference in power between PCAT and NVML measurements on
average

Energy Measurement Accuracy

• Less power consumption may be preferred over shorter execution times for applications
such as edge computing. This work focuses on such use cases

• Performing fewer global loads and stores significantly decreases the GPU power
consumption at the cost of increased execution time

• By using the OP_Count tree we optimize the computation order in a sequence of matrices.

• The hardware counters and APIs supplied by NVidia provide accurate results with precision
comparable to the measurements made using the hardware power capture analysis tool
(PCAT)

• Future work: we plan to optimize the fused kernels by removing atomic operations, thus
reducing computation time. Once the fused kernels are implemented, we will generate the
fusion tree and compare the time and energy between TEE-ACM2 with and without fusion

Conclusions and Future Work

Blocking Strategy
• Extending the approach to 3 matrices :
• To compute (A1A2) A3,
the intermediate results
produced in matrix,
T =A1 A2
are consumed directly
from on-chip memory
to produce values
of the final matrix,
R = T A3.
This avoids writing of
Intermediate matrix T to
Off-chip memory.

Closed form solutions

Optimal Algorithm for Matrix Chain Multiplication
• The OP_Count algorithm produces a tree decomposing a Matrix Chain, which indicates the

order to compute the matrix products to minimize operations
• OP_DM_Fuse is created from OP_Count, that reduces the number of operations and then

minimizes the off-chip data transfers by using fusion
• Minimize over Left-Fuse, Right-Fuse, and No-Fusion

Example for fusion decision algorithm
• Input: 5 matrices with sizes 936, 1008, 552, 368, 1016, 616, 544 and M = 65,536

1. Visit each node of the OP_Count tree
2. Consider options: no fuse, left fuse, right fuse
3. Calculate the minimum number of data transfers

for each node
4. Use the optimal over all possible options

• The output tree consists of the minimum
number of computations and data transfers,
using matrix fused multiplication

Fused Matrix Multiplication[1]

P0

P1

P2

x

A1

A2

A3

T R

P0 P0

P1

P2

P2

P3

P3

y

xx

y
y

z'

z'

z

z

Global Memory Reads
(A1 , A2 , A3)

Shared Memory Reads and Writes
(T)

Global Memory Reads and Writes
(R)

Right fuse strategy for Ai…j

⟨ i , k ⟩ ⟨ k +1 , j ⟩

⟨ i , j ⟩

⟨ i , k1 ⟩ ⟨ k1 +1, k ⟩ ⟨ k +1 , k2 ⟩ ⟨ k2 +1 , j ⟩

= 4,500 multiplications = 27,000 multiplications

R = A1 A2 A3

(A1 A2) A3 A1 (A2 A3)

Sizes 10×30, 30×5, 5×60

= 30×5×60 + 10×30×60 = 10×30×5 + 10×5×60

Single Matrix Multiplication Results

Single Matrix Multiplication : Blocking Strategy
Single Matrix Multiplication[1]

=

R A1 A2

P0

P1

P1

P2

P0

P2

x
z z

y
x

y

y

x

1 P0

1

P2

xy = M

Theorem:
Given P0,P1,P2 matrix sizes and M - shared
memory capacity, the minimum number of data
transfers is given by :

2. 𝑃%. 𝑃#. 𝑃&
𝑀

+ 𝑃%. 𝑃&

where x = y = 𝑀 , and z = [1, P1]

• The OP-Count tree implementation with cuBLAS computes the same sequence 35% faster
and consumes 43% less energy on average

• TEE-ACM2 vs Cublas: TEE-ACM2 takes 5-25% more time with 3% energy savings on average

Matrix Chain Multiplication Results

*Present results were obtained on a Darwin’s node equipped with v100 GPUs and Cascade Lake CPUs The plots shows the results from 3 kernels
usage per matrix multiplication

Off-chip Data Transfers 𝑥∗ 𝑦∗

Single Matrix Multiplication 𝑆##∗ =
2𝑃0𝑃1𝑃2

𝑀
+ 𝑃0𝑃2

𝑀 𝑀

Left Fused Multiplication of 3 Matrices
𝐹$∗ =

2𝑃0𝑃1𝑃2 1 + 𝛼 𝛼′
𝑀

− 𝑃0𝑃%
⁄𝑀 𝛼′ 𝑀𝛼′

Right Fused Multiplication of 3 Matrices
𝐹&∗ =

2𝑃'𝑃%𝑃(1 + 𝛽 𝛽′
𝑀

− 𝑃'𝑃3
𝑀𝛽′ ⁄𝑀 𝛽′

T-matrix
No Fuse

(data
transfers)

Fuse left
(data

transfers)

Fuse right
(data

transfers)

Final Data
Transfers Fusion decision Tile sizes

(x, y)

T1 : (2,3) 1599696 - - 1599696 No fuse (A2,A3) (256,256)
T2 : (1,3) 4683168 - 3072693 3072693 Right fuse (A1 (A2,A3)) (304,208)
T3 : (4,5) 1799336 - - 1799336 No fuse (A4,A5) (256,256)
T4 : (4,6) 3116960 2942313 - 2942313 Left fuse ((A4,A5), A6) (216,296)
T5 : (1,6) 8243798 9364761 9136171 8243798 No fuse (T2,T4) (256,256)

Output Tree

T5

T2

T1
A1

A2 A3

T4

T3

A4 A5

A6

Input Tree

T5

T2

A1 A2 A3

T4

A4 A5 A6

Energy savings of TEE-ACM2 over cuBLAS
lower is better

• The number of global loads are reduced by 66% compared to cuBLAS. This results in 30%
power saving and 8% energy saving on average, and up to 21% savings

• The average execution time overhead of TEE-ACM2 is 20%
*Present results were obtained on a Darwin’s node equipped with v100 GPUs and Cascade Lake CPUs (average of 10 runs)

Installation of PCAT device on GPU
for hardware power measurement

PCAT software interface

PCIe Riser

PCAT

*Present results were obtained on a a Quadro P2000 GPU

Power Time Series obtained by PCAT and NVML
(16x16x16K problem size)

NVML power precision on an entire run

Power savings of TEE-ACM2 over cuBLAS
lower is better

⟨ i , k ⟩ ⟨ k +1 , j ⟩

⟨ i , j ⟩

⟨ i , k1 ⟩ ⟨ k1 +1, k ⟩ ⟨ k +1 , k2 ⟩ ⟨ k2 +1 , j ⟩

Left fuse strategy for Ai…j

LA-UR-22-27515
Special thanks to David Rich for his assistance with Darwin Cluster.

We also would like to thank Scot Halverson, Nyle Usmani, and Roland Tarrazo from. Nvidia for supplying the Power Capture Analysis Tool

References
[1] Prajapati, Nirmal. Analytical Cost Metrics: Days of Future Past. Doctoral
Dissertation. Colorado State University. Fort Collins, Colorado. 2019.
[2] Dally, Bill. "Challenges for future computing systems. Keynote speech at The 10th
HiPEAC." (2015).

Number of matrices

Impact of tree on time for computation of sequences of matrices

Ti
m

e
[s

]

Impact of tree on energy for computation of sequences of matrices

Number of matrices

En
er

gy
 [J

]

Notation:
P0xP1, P1xP2 à P0,P1,P2

Low level TEE-ACM2 optimizations

• Double level buffering : use of registers
• Loop unrolling
• Large shared memory tiles

Global Memory

Shared Memory

Registers

• Using cuBLAS decreases execution time by a factor of three
• Using TEE-ACM2, we save up to 3% energy while taking 25% more time

The minimum is found at x = y

Total number of global data transfers
(read + writes) :

𝑃1𝑃2+ 𝑃0𝑃1𝑃2 ∗
(𝑥 + 𝑦)
𝑥𝑦

Given the matrix sizes P0, P1, P2
and the on-chip memory capacity M,

solve for x, y, z that minimize the
number of off-chip data transfers.

Minimize !

• Energy consumption of a GPU can be broken
down into 2 major parts:
• Energy of the GPU itself
• Energy of the operations executing on the

GPU
• Memory operations dominate the executed
operations

(Bill Dally, Challenges of Future Computing
Systems, HiPEAC 2015)
• Our goal is to optimize the total energy

consumption for Matrix Chain Multiplications

Fused-Kernel Results

*Present results were obtained on a Darwin’s node equipped with v100 GPUs and Sandy Bridge CPUs (average of 10 runs)

• Our implementation of fused-kernel approach uses atomic adds that drastically impact the
execution time. We spend ~80% of the time performing atomic adds in shared memory

• Reducing/Eliminating atomic adds will improve execution time

