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mesh sizes. However, smaller GPU memory limits the maximum
mesh size we can experiment per-node.

« For a mesh size of 2563, the runtime on Darwin, using a V100 GPU
was 9x faster, using a A100 GPU was 25x faster compared to other
FleCSI backends.
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PARALLELIZATION & ACCELERATION

 HARD achieved near linear scalability up to 16 nodes and for multiple backends.

Specializations for FleCSI
topologies

* |ncorporate more complex schemes for matter-radiation coupling.
* GPU support for radiation-coupled hydrodynamics and multi-GPU setting.
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