.. |br| raw:: html
.. _hard_test_problems: Test Problems ************************************ We describe several test problems that users can test with HARD Sod Shock Tube ~~~~~~~~~~~~~~~~~ The Sod shock tube is a standard test with a classical Riemann problem with the following initial parameters: .. math:: (\rho, v, p)_{t=0} = \begin{cases} (1.0, 0.0, 1.0) & \text{if} \;\; 0.0 < x \leq 0.5 \\ (0.125, 0.0, 0.1) & \text{if} \;\; 0.5 < x < 1.0. \end{cases} This leads to the development of a shock front, which propagates from high-density into low-density regions, and is followed by a contact discontinuity. A density rarefaction wave propagates into the high-density region. Heating-Cooling ~~~~~~~~~~~~~~~~~ Temperature Induced Shock ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Rayleigh-Taylor Instability ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Rayleigh–Taylor Instability consists of a dense fluid over a lighter fluid in a gravitational field, and is perturbed to initiate the instability. - **Gravitational acceleration** acts in the x-direction: ``g = g_x`` - **Pressure at interface**: :math:`p_0 = 2.5` - **Velocity perturbation (in the y-direction)**: .. math:: v(x, y) = v_0 \cdot \left( \frac{1 + \cos(4\pi x)}{2} \right) \left( \frac{1 + \cos(3\pi y)}{2} \right), \quad v_0 = 0.05 - **Bottom fluid (light)**: - Density: :math:`\rho_L = 1.0` - x-velocity: :math:`u_L = 0.0` - **Top fluid (heavy)**: - Density: :math:`\rho_H = 2.0` - x-velocity: :math:`u_H = 0.0` The pressure is initialized to maintain hydrostatic equilibrium across the fluid interface. The pressure :math:`p(x)` is given by: .. math:: p(x) = \begin{cases} p_0 + \rho_L g x, & \text{for } x < 0.75 \\ p_0 + \rho_L g \cdot 0.75 + \rho_H g (x - 0.75), & \text{for } x \geq 0.75 \end{cases} At each point in the domain, the following quantities are initialized: - **Density**: .. math:: \rho(x) = \begin{cases} \rho_L, & x < 0.75 \\ \rho_H, & x \geq 0.75 \end{cases} - **x-Momentum density**: .. math:: (\rho u)(x) = \rho(x) \cdot u(x) = 0 - **Gravitational source term (x-direction)**: .. math:: (\rho g)(x) = \rho(x) \cdot g - **Total energy density**: .. math:: E(x) = \rho \cdot e(\rho, p) + \frac{1}{2} \rho \left( u^2 + v^2 \right) where :math:`e(\rho, p)` is the specific internal energy computed from the equation of state. - **Radiation energy density**: .. math:: E_{\text{rad}} = 0 The setup supports 1D, 2D, and 3D simulations. A cosine-modulated perturbation in the y-velocity initiates the RTI at the fluid interface. The pressure profile ensures that the fluid is initially in hydrostatic equilibrium. Kelvin-Helmholtz Instability ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. vim: set tabstop=2 shiftwidth=2 expandtab fo=cqt tw=72 :