Developers & Contributors#
Maksim Kulichenko, LANL
Guoqing Zhou, LANL
Vishikh Athavale, LANL
Nikita Fedik, LANL
William Colglazier, LANL
Martin Stöhr, LANL
Anders M. N. Niklasson, LANL
Benjamin Nebgen, LANL
Sergei Tretiak, LANL
How to Cite#
If you use PYSEQM in your research, please cite the following works:
Zhou, G., Lubbers, N., Barros, K., Tretiak, S., & Nebgen, B. (2022). Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics. Proceedings of the National Academy of Sciences, 119(27), e2120333119. https://doi.org/10.1073/pnas.2120333119
Kulichenko, M., Barros, K., Lubbers, N., Fedik, N., Zhou, G., Tretiak, S., Nebgen, B., & Niklasson, A. M. N. (2023). Semi-empirical shadow molecular dynamics: A PyTorch implementation. Journal of Chemical Theory and Computation, 19(11), 3209–3222. https://doi.org/10.1021/acs.jctc.3c00234
Zhou, G., Nebgen, B., Lubbers, N., Malone, W., Niklasson, A. M. N., & Tretiak, S. (2020). Graphics processing unit-accelerated semiempirical Born–Oppenheimer molecular dynamics using PyTorch. Journal of Chemical Theory and Computation, 16(8), 4951–4962. https://doi.org/10.1021/acs.jctc.0c00243