
Introduction
Parallel trajectory splicing, or ParSplice, is an attempt to 

solve the enduring challenge of simulating the evolution of 

complex atomistic systems over long time scales. 

• Conventional molecular dynamics (MD) suffer from time 

scale limitations.

• Typical simulations can only be performed for 

durations on the order of nanoseconds. 

• Hinders physical insights.

• Alleviated using accelerated-MD (AMD) methods.

• ParSplice aims at improving the performance of AMD 

methods for systems with heterogeneous distributions of 

barriers. 

Parallel Trajectory Splicing

• Conventional trajectory can be decomposed into

segments

• ParSplice uses this property to concurrently generate

segments

• The segments are spliced together to form a trajectory

• Current implementation:

• Producers complete requests for segments

• Splicer uses Markov chain based predictor to

preemptively schedule production of segments

• Segments are stored in a database

• Improved KMC predictor using message-passing + 

multi-threading (Fig. 5)

Conclusions
A two-pronged approach of using heterogeneous 

architectures, and improving the efficiency of the predictor 

in ParSplice was explored and currently we are 

investigating:

• Use of different many-core architectures like Intel 

Knights Landing (KNL).

• Optimized dynamic load balancing between different 

architectures.

• Issue of inherent uncertainty in the prediction model, 

as the current predictor only takes into account the 

previous observations to formulate the problem.
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Facilitating the Scalability of ParSplice for Exascale Testbeds

MPI parallelization
• Most functions are asynchronous

• The splicer, databases, and work manager are executed in parallel

processes

• Work manager spawns parallel workers

• Good weak scaling, but relatively poor strong scaling

Motivation
Large number of atoms can be simulated, but the temporal reach of 

MD is limited. The performance of parsplice can be further improved 

by 

• Efficient prediction of the MD trajectory

• Large scale MD segment generation

Two-pronged approach to solve the problem

• Improve efficiency of predictor to effectively utilize the generated 

segments in the near future of their generation

• Exploit massive parallelism using heterogeneous architectures for 

large scale segment generation

Improving Predictor Efficiency
The predictor builds a Markov chain based on the previously visited 

states by the MD segments and performs a Kinetic Monte Carlo 

(KMC) analysis to predict the next probable state of the trajectory.

• Physics can be accelerated using elevated temperature

• Assign a fraction of workers to perform ParSplice runs at an 

elevated temperature

• Update KMC predictor using elevated temperature runs

• Statsitics are weighted according to 𝑁𝐿 = 𝑁𝐻𝑒
(𝐵𝐻−𝐵𝐿)𝐸

• Proper choice of temperatures and energy barriers resulted in 

improved probabilities of the segments spliced into the trajectory as 
shown in Fig. 1 

• Incorporate Bayesian estimator that takes the inherent model 

uncertainty into account (Fig. 2)

Exploiting Latent Parallelism
The ParSplice code is written in C++ and is built on the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) software 

framework. 

• Hardware platform used for testing: Intel Haswell (E5-2660_v3) 

nodes on Darwin cluster at the Los Alamos National Laboratory

• Intel Vtune Amplifier showed that more than 90% of the execution 

time is spent in LAMMPS function calls

The following optimizations were performed to tailor the code to the 

hardware:

• Compiler optimizations to generate auto-vectorized AVX-2 

instructions (Fig. 3)

• GPUs to accelerate the underlying MD simulations (Fig. 4)

• Hardware: Intel Haswell (E5-2660_v3) + NVIDIA K40m nodes
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Fig. 1: Used MD segments vs Wall clock time for different assumed energy 
barriers compared to run which does not use high temperature statistics.

Fig. 3: Improvement by auto-vectorization using the Intel compiler compared 
to GNU C compiler.

• Parallelize the 

generation of long 

trajectories in time-

parallel fashion.

• Employ speculative 

execution strategy. 

The preliminary results of 

our attempts to enhance 

the scalability of ParSplice 

are presented in this 

poster. Fig. 1: Time evolution of UO2 crystal 
simulated using ParSplice.
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Fig. 4: Comparison of the number of MD segments generated using CPUs 
and CPUs+GPUs in a time duration of 20 min.
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Fig. 2: Comparison of the number of spliced segments using Bayesian 
estimator vs. Maximum likelihood estimator.
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Fig. 5: Performance gain by using the hybrid approach of message-
passing+multi-threading the KMC predictor. 
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