
Introduction
Parallel trajectory splicing, or ParSplice, is an attempt to

solve the enduring challenge of simulating the evolution of

complex atomistic systems over long time scales.

• Conventional molecular dynamics (MD) suffer from time

scale limitations.

• Typical simulations can only be performed for

durations on the order of nanoseconds.

• Hinders physical insights.

• Alleviated using accelerated-MD (AMD) methods.

• ParSplice aims at improving the performance of AMD

methods for systems with heterogeneous distributions of

barriers.

Parallel Trajectory Splicing

• Conventional trajectory can be decomposed into

segments

• ParSplice uses this property to concurrently generate

segments

• The segments are spliced together to form a trajectory

• Current implementation:

• Producers complete requests for segments

• Splicer uses Markov chain based predictor to

preemptively schedule production of segments

• Segments are stored in a database

• Improved KMC predictor using message-passing +

multi-threading (Fig. 5)

Conclusions
A two-pronged approach of using heterogeneous

architectures, and improving the efficiency of the predictor

in ParSplice was explored and currently we are

investigating:

• Use of different many-core architectures like Intel

Knights Landing (KNL).

• Optimized dynamic load balancing between different

architectures.

• Issue of inherent uncertainty in the prediction model,

as the current predictor only takes into account the

previous observations to formulate the problem.

Vinay B. Ramakrishnaiah1*, Jonas L. Landsgesell2, Ying Zhou3, Iris Linck4, Mouad Ramil5, Joshua Bevan6, Danny Perez7, Louis J. Vernon7,
Thomas D. Swinburne7, Robert S. Pavel7, and Christoph Junghans7

1UWYO, Laramie, WY, USA, 2Univ. of Stuttgart, Stuttgart, Germany, 3Loughborough University, Leicestershire, UK, 4CU Denver, Denver, CO, USA, 5École des ponts ParisTech, Champs-sur-Marne, France,
6UIUC, Champaign, IL, USA, 7LANL, Los Alamos, NM, USA.

Facilitating the Scalability of ParSplice for Exascale Testbeds

MPI parallelization
• Most functions are asynchronous

• The splicer, databases, and work manager are executed in parallel

processes

• Work manager spawns parallel workers

• Good weak scaling, but relatively poor strong scaling

Motivation
Large number of atoms can be simulated, but the temporal reach of

MD is limited. The performance of parsplice can be further improved

by

• Efficient prediction of the MD trajectory

• Large scale MD segment generation

Two-pronged approach to solve the problem

• Improve efficiency of predictor to effectively utilize the generated

segments in the near future of their generation

• Exploit massive parallelism using heterogeneous architectures for

large scale segment generation

Improving Predictor Efficiency
The predictor builds a Markov chain based on the previously visited

states by the MD segments and performs a Kinetic Monte Carlo

(KMC) analysis to predict the next probable state of the trajectory.

• Physics can be accelerated using elevated temperature

• Assign a fraction of workers to perform ParSplice runs at an

elevated temperature

• Update KMC predictor using elevated temperature runs

• Statsitics are weighted according to 𝑁𝐿 = 𝑁𝐻𝑒
(𝐵𝐻−𝐵𝐿)𝐸

• Proper choice of temperatures and energy barriers resulted in

improved probabilities of the segments spliced into the trajectory as
shown in Fig. 1

• Incorporate Bayesian estimator that takes the inherent model

uncertainty into account (Fig. 2)

Exploiting Latent Parallelism
The ParSplice code is written in C++ and is built on the Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS) software

framework.

• Hardware platform used for testing: Intel Haswell (E5-2660_v3)

nodes on Darwin cluster at the Los Alamos National Laboratory

• Intel Vtune Amplifier showed that more than 90% of the execution

time is spent in LAMMPS function calls

The following optimizations were performed to tailor the code to the

hardware:

• Compiler optimizations to generate auto-vectorized AVX-2

instructions (Fig. 3)

• GPUs to accelerate the underlying MD simulations (Fig. 4)

• Hardware: Intel Haswell (E5-2660_v3) + NVIDIA K40m nodes

0

50

100

150

200

250

300

0 200 400 600 800 1,000 1,200

U
SE

D
 M

D
 S

EG
M

EN
TS

WALL CLOCK TIME (S)

E=1.0eV E=1.5 eV no high temp

Fig. 1: Used MD segments vs Wall clock time for different assumed energy
barriers compared to run which does not use high temperature statistics.

Fig. 3: Improvement by auto-vectorization using the Intel compiler compared
to GNU C compiler.

• Parallelize the

generation of long

trajectories in time-

parallel fashion.

• Employ speculative

execution strategy.

The preliminary results of

our attempts to enhance

the scalability of ParSplice

are presented in this

poster. Fig. 1: Time evolution of UO2 crystal
simulated using ParSplice.

0

1

2

3

4

5

6

7

0 2 4 6 8

O

F
M

D
 S

TE
P

S
(I

N

M
IL

LI
O

N
S)

OF NODES

CPU+GPU CPU

Fig. 4: Comparison of the number of MD segments generated using CPUs
and CPUs+GPUs in a time duration of 20 min.

0

1

2

3

4

5

6

7

5 10 30 50

O

F
M

D
 S

TE
P

S
(I

N

M
IL

LI
O

N
S)

OF NODES

Intel GCC

*vramakr1@uwyo.edu

0

2

4

6

8

10

12

14

0 100 200 300

O

F
SP

LI
C

ED
 S

EG
M

EN
TS

(X

1
0

0
0

0
)

WALL CLOCK TIME (S)

Bayesian estimator

Max likelihood estimator

Fig. 2: Comparison of the number of spliced segments using Bayesian
estimator vs. Maximum likelihood estimator.

50

100

150

200

250

300

301 401 501 601 701 801 901 1001

O

F
U

SE
D

 S
EG

M
EN

TS

CLOCK TIME (100SEC)

baseline 10 threads

20 threads 30 threads

50 threads

Fig. 5: Performance gain by using the hybrid approach of message-
passing+multi-threading the KMC predictor.

LA-UR-17-26402

