excited module
Full Documentation for hippynn.graphs.nodes.excited module.
Click here for a summary page.
Nodes for excited state modeling.
- class LocalEnergyNode(name, parents, first_is_interacting=False, module='auto', **kwargs)[source]
 Bases:
Energies,ExpandParents,HAtomRegressor,MultiNodePredict a localized energy, with contributions from implicitly computed atoms.
Note
This node has parent expansion, following these procedures.
If matching (Network), then apply expansion0
If matching (Network, AtomIndexer), then apply expansion1
Asserts that the number of parents is 5
- auto_module_class
 alias of
LocalEnergy
- expansion0(net, *, purpose, **kwargs)[source]
 Used for creation from parents with signature (Network)
- expansion1(net, pdindexer, **kwargs)[source]
 Used for creation from parents with signature (Network, AtomIndexer)
- input_names = ('hier_features', 'system_index', 'atom index', 'n_systems', 'n_atoms_max')
 
- main_output_name = 'mol_energy'
 
- output_index_states = (<IdxType.Systems>, <IdxType.Atoms>, <IdxType.Atoms>, <IdxType.Atoms>, <IdxType.Atoms>)
 
- output_names = ('mol_energy', 'atom_energy', 'atom_preenergy', 'atom_probabilities', 'atom_propensities')
 
- parent_expander: ParentExpander = <hippynn.graphs.nodes.base.definition_helpers.ParentExpander object>
 
- class MAEPhaseLoss(predicted, true)[source]
 Bases:
_BaseCompareLoss- torch_module: torch.nn.Module = LambdaModule(_mae_with_phases)
 
- class MSEPhaseLoss(predicted, true)[source]
 Bases:
_BaseCompareLoss- torch_module: torch.nn.Module = LambdaModule(_mse_with_phases)
 
- class NACRMultiStateNode(name, parents, module='auto', module_kwargs=None, **kwargs)[source]
 Bases:
AutoKw,SingleNodeCompute the non-adiabatic coupling vector multiplied by the energy difference between all pairs of states.
- auto_module_class
 alias of
NACRMultiState
- input_names = ('charges', 'coordinates', 'energies')
 
- class NACRNode(name: str, parents: Tuple, module='auto', module_kwargs=None, **kwargs)[source]
 Bases:
AutoKw,SingleNodeCompute the non-adiabatic coupling vector multiplied by the energy difference between two states.
- input_names = ('charges i', 'charges j', 'coordinates', 'energy i', 'energy j')