excited module

Full Documentation for hippynn.graphs.nodes.excited module. Click here for a summary page.

Nodes for excited state modeling.

class LocalEnergyNode(name, parents, first_is_interacting=False, module='auto', **kwargs)[source]

Bases: Energies, ExpandParents, HAtomRegressor, MultiNode

Predict a localized energy, with contributions from implicitly computed atoms.

Note

This node has parent expansion, following these procedures.

  1. If matching (Network), then apply expansion0

  2. If matching (Network, AtomIndexer), then apply expansion1

  3. Asserts that the number of parents is 5

auto_module_class

alias of LocalEnergy

auto_module()[source]
expansion0(net, *, purpose, **kwargs)[source]

Used for creation from parents with signature (Network)

expansion1(net, pdindexer, **kwargs)[source]

Used for creation from parents with signature (Network, AtomIndexer)

input_names = ('hier_features', 'system_index', 'atom index', 'n_systems', 'n_atoms_max')
main_output_name = 'mol_energy'
output_index_states = (<IdxType.Systems>, <IdxType.Atoms>, <IdxType.Atoms>, <IdxType.Atoms>, <IdxType.Atoms>)
output_names = ('mol_energy', 'atom_energy', 'atom_preenergy', 'atom_probabilities', 'atom_propensities')
parent_expander: ParentExpander = <hippynn.graphs.nodes.base.definition_helpers.ParentExpander object>
class MAEPhaseLoss(predicted, true)[source]

Bases: _BaseCompareLoss

torch_module: torch.nn.Module = LambdaModule(_mae_with_phases)
class MSEPhaseLoss(predicted, true)[source]

Bases: _BaseCompareLoss

torch_module: torch.nn.Module = LambdaModule(_mse_with_phases)
class NACRMultiStateNode(name, parents, module='auto', module_kwargs=None, **kwargs)[source]

Bases: AutoKw, SingleNode

Compute the non-adiabatic coupling vector multiplied by the energy difference between all pairs of states.

auto_module_class

alias of NACRMultiState

input_names = ('charges', 'coordinates', 'energies')
class NACRNode(name: str, parents: Tuple, module='auto', module_kwargs=None, **kwargs)[source]

Bases: AutoKw, SingleNode

Compute the non-adiabatic coupling vector multiplied by the energy difference between two states.

auto_module_class

alias of NACR

input_names = ('charges i', 'charges j', 'coordinates', 'energy i', 'energy j')