.. pyQBTNs documentation master file, created by sphinx-quickstart on Sun May 30 01:03:30 2021. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. Welcome to pyQBTNs's documentation! =================================== .. image:: ../rd100.png :width: 324px :height: 200px :scale: 100 % :alt: RD100 :align: center pyQBTNs is a Python library for boolean matrix and tensor factorization using D-Wave quantum annealers. The library includes five different boolean tensor decomposition methods making up three distinct types of tensor networks. The methodologies for pyQBTNs are introduced in [1]. pyQBTNs allows the user to specify local solvers that do not require a connection to a quantum annealer, but still solve the optimization problems the annealer would solve in the factorization algorithm. In order to use a D-Wave quantum annealer as the solver for this software, the user must set up a D-Wave configuration file. The tensor methods allow for multi-rank factorization, but the current implementation only allows single rank factorization (i.e. one rank used across the entire algorithm) Resources ======================================== * `Examples `_ * `Quantum Annealing Algorithms for Boolean Tensor Networks `_ * `Boolean Hierarchical Tucker Networks on Quantum Annealers `_ * `Repository `_ Installation ======================================== **Option 1: Install using pip** .. code-block:: shell pip install git+https://github.com/lanl/pyQBTNs.git **Option 2: Install from source** .. code-block:: shell git clone https://github.com/lanl/pyQBTNs.git cd pyQBTNs conda create --name pyQBTNs python=3.7.3 source activate pyQBTNs python setup.py install Setup and Verify D-Wave connection ======================================== 1. `Install pyQBTNs <#installation>`_ 2. Sign up with `D-Wave Leap `_ (Make sure that you have at least 1 minute of QPU time on your free acccount). 3. Set up `D-Wave config file `_ (You can use either an **Advantage** system or a **2000Q** system, but NOT a **Hybrid** solver). 4. Run an example: .. code-block:: shell cd tests python -m unittest TestMatrixFactorizationQuantum.py .. note:: For more detailed description of the D-Wave setup process see the `tutorials `_ or the `example notebook on D-Wave `_. Example Usage ======================================== .. code-block:: python from pyQBTNs import QBTNs import numpy as np qbtns = QBTNs(factorization_method="Matrix_Factorization", solver_method="classical-simulated-annealing") p = 0.7 ### Bernoulli boolean density parameter N1 = 10 ### Dimension 1 N2 = 10 ### Dimension 2 RANK = 3 ### Factorization rank np.random.seed(42) A = np.random.choice(a=[False, True], size=(N1, RANK), p=[p, 1-p]) B = np.random.choice(a=[False, True], size=(RANK, N2), p=[p, 1-p]) X = np.matmul(A, B) print("A =", A) print("B =", B) print("X =", X) print("X dimensions =", X.shape) qbtns.fit(X, RANK) print("Hamming distance =", qbtns.get_score()) A_prime, B_prime = qbtns.get_factors() print("A_prime =", A_prime) print("B_prime =", B_prime) print("Reconstructed Matrix =", qbtns.get_reconstructed_tensor()) Prerequisites ======================================== * `Anaconda `_ (Optional) * decorator==4.3.0 * dwave-ocean-sdk>=3.3.0 * numpy==1.19.2 * tensorly>=0.4.5 * sympy>=1.7.1 * networkx==2.5 * nimfa>=1.4.0 * scikit-learn==0.24.1 * matplotlib>=3.4.2 * Pillow>=8.2.0 How to Cite pyQBTNs? ======================================== .. code-block:: console @MISC{Pelofske2021_pyQBTNs, author = {E. {Pelofske} and H. {Djidjev} and D. {O'Malley} and M. E. {Eren} and B. S. {Alexandrov}}, title = {pyQBTNs}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4876527}, howpublished = {\url{https://github.com/lanl/pyQBTNs}} } @misc{pelofske2021boolean, title={Boolean Hierarchical Tucker Networks on Quantum Annealers}, author={Elijah Pelofske and Georg Hahn and Daniel O'Malley and Hristo N. Djidjev and Boian S. Alexandrov}, year={2021}, eprint={2103.07399}, archivePrefix={arXiv}, primaryClass={quant-ph} } @misc{pelofske2021quantum, title={Quantum Annealing Algorithms for Boolean Tensor Networks}, author={Elijah Pelofske and Georg Hahn and Daniel O'Malley and Hristo N. Djidjev and Boian S. Alexandrov}, year={2021}, eprint={2107.13659}, archivePrefix={arXiv}, primaryClass={quant-ph} } Authors ======================================== - `Elijah Pelofske `_ : Information Sciences, Los Alamos National Laboratory - `Hristo Djidjev `_ : Information Sciences, Los Alamos National Laboratory - `Dan O'Malley `_ : Computational Earth Science, Los Alamos National Laboratory - `Maksim Ekin Eren `_ : Advanced Research in Cyber Systems, Los Alamos National Laboratory - `Boian S. Alexandrov `_ : Theoretical Division, Los Alamos National Laboratory Copyright Notice ======================================== © 2021. Triad National Security, LLC. All rights reserved. This program was produced under U.S. Government contract 89233218CNA000001 for Los Alamos National Laboratory (LANL), which is operated by Triad National Security, LLC for the U.S. Department of Energy/National Nuclear Security Administration. All rights in the program are reserved by Triad National Security, LLC, and the U.S. Department of Energy/National Nuclear Security Administration. The Government is granted for itself and others acting on its behalf a nonexclusive, paid-up, irrevocable worldwide license in this material to reproduce, prepare derivative works, distribute copies to the public, perform publicly and display publicly, and to permit others to do so. **LANL C Number: C21027** License ======================================== Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. References ======================================== .. bibliography:: refs.bib .. toctree:: :maxdepth: 2 :caption: Contents: QBTNs modules Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`