epbd_bert.dnabert2_epbd package#
Submodules#
epbd_bert.dnabert2_epbd.configs module#
- class epbd_bert.dnabert2_epbd.configs.Configs(*, n_classes: int = 690, batch_size: int = 170, num_workers: int = 32, learning_rate: float = 1e-05, weight_decay: float = 0.1, max_epochs: int = 100, epbd_features_type: str = '', epbd_feature_input_dim: int = 1200, best_model_monitor: str = 'val_loss', best_model_monitor_mode: str = 'min')[source]#
Bases:
object
- batch_size: int = 170#
- best_model_monitor: str = 'val_loss'#
- best_model_monitor_mode: str = 'min'#
- epbd_feature_input_dim: int = 1200#
- epbd_features_type: str = ''#
- learning_rate: float = 1e-05#
- max_epochs: int = 100#
- n_classes: int = 690#
- num_workers: int = 32#
- weight_decay: float = 0.1#
epbd_bert.dnabert2_epbd.model module#
- class epbd_bert.dnabert2_epbd.model.Dnabert2EPBDModel(configs: Configs)[source]#
Bases:
LightningModule
_summary_
- Parameters:
lightning (_type_) – _description_
_summary_
- Parameters:
configs (Configs) – _description_
- calculate_loss(logits: Tensor, targets: Tensor) float [source]#
_summary_
- Parameters:
logits (torch.Tensor) – _description_
targets (torch.Tensor) – _description_
- Returns:
_description_
- Return type:
float
- forward(inputs)[source]#
_summary_
- Parameters:
inputs (_type_) – _description_
- Returns:
_description_
- Return type:
_type_