toronyi
Test the Toronyi Two-Phase Problem
This test case is constructed from the VV Test Suite toronyi comparison of FEHM and Thomas & Pierson Solution for Final Saturation.
Compares the generated files for Coordinate and FDM grid nodes with output files known to be correct. Tests all values at time 2.0. Run 2 test using toronyi_fdm.in and toronyi.in.
Test Directory: FEHM/fehmpytests/toronyi
Example File toronyi.in
**** Toronyi Two-Phase Problem ****
node
36
10 11 12 13 14 15
18 19 20 21 22 23
26 27 28 29 30 31
34 35 36 37 38 39
42 43 44 45 46 47
50 51 52 53 54 55
cont
avs 10 100.
saturation
end
sol
1 -1
init
4.3000 000. 250. 0. 0. 250. 0. 0.
rlp
2 0.05 0.05 1.0 1.0 0.0 0.0 0.0
0
1 0 0 1
pres
1 0 0 4.3000 .2 2
rock
1 0 0 2563. 1010. 0.0500
cond
1 0 0 1.73e-00 1.73e-00 0.0e-00
perm
1 0 0 9.869e-13 9.869e-13 0.0e-00
flow
29 29 1 0.082011 -025. 0.
time
10. 78.31 0009 10 1985 07
ctrl
40 1.e-8 08
1 0 0 1
1.0 0.0 0.75
40 1.00 0.0001 010.00
1 0
coor
64
1 0.00000 182.80000 0.00000
2 152.33333 182.80000 0.00000
3 457.00000 182.80000 0.00000
4 761.66667 182.80000 0.00000
5 1066.33333 182.80000 0.00000
6 1371.00000 182.80000 0.00000
7 1675.66667 182.80000 0.00000
8 1828.00000 182.80000 0.00000
9 0.00000 167.56667 0.00000
10 152.33333 167.56667 0.00000
11 457.00000 167.56667 0.00000
12 761.66667 167.56667 0.00000
13 1066.33333 167.56667 0.00000
14 1371.00000 167.56667 0.00000
15 1675.66667 167.56667 0.00000
16 1828.00000 167.56667 0.00000
17 0.00000 137.10000 0.00000
18 152.33333 137.10000 0.00000
19 457.00000 137.10000 0.00000
20 761.66667 137.10000 0.00000
21 1066.33333 137.10000 0.00000
22 1371.00000 137.10000 0.00000
23 1675.66667 137.10000 0.00000
24 1828.00000 137.10000 0.00000
25 0.00000 106.63333 0.00000
26 152.33333 106.63333 0.00000
27 457.00000 106.63333 0.00000
28 761.66667 106.63333 0.00000
29 1066.33333 106.63333 0.00000
30 1371.00000 106.63333 0.00000
31 1675.66667 106.63333 0.00000
32 1828.00000 106.63333 0.00000
33 0.00000 76.16667 0.00000
34 152.33333 76.16667 0.00000
35 457.00000 76.16667 0.00000
36 761.66667 76.16667 0.00000
37 1066.33333 76.16667 0.00000
38 1371.00000 76.16667 0.00000
39 1675.66667 76.16667 0.00000
40 1828.00000 76.16667 0.00000
41 0.00000 45.70000 0.00000
42 152.33333 45.70000 0.00000
43 457.00000 45.70000 0.00000
44 761.66667 45.70000 0.00000
45 1066.33333 45.70000 0.00000
46 1371.00000 45.70000 0.00000
47 1675.66667 45.70000 0.00000
48 1828.00000 45.70000 0.00000
49 0.00000 15.23333 0.00000
50 152.33333 15.23333 0.00000
51 457.00000 15.23333 0.00000
52 761.66667 15.23333 0.00000
53 1066.33333 15.23333 0.00000
54 1371.00000 15.23333 0.00000
55 1675.66667 15.23333 0.00000
56 1828.00000 15.23333 0.00000
57 0.00000 0.00000 0.00000
58 152.33333 0.00000 0.00000
59 457.00000 0.00000 0.00000
60 761.66667 0.00000 0.00000
61 1066.33333 0.00000 0.00000
62 1371.00000 0.00000 0.00000
63 1675.66667 0.00000 0.00000
64 1828.00000 0.00000 0.00000
elem
4 49
1 9 10 2 1
2 10 11 3 2
3 11 12 4 3
4 12 13 5 4
5 13 14 6 5
6 14 15 7 6
7 15 16 8 7
8 17 18 10 9
9 18 19 11 10
10 19 20 12 11
11 20 21 13 12
12 21 22 14 13
13 22 23 15 14
14 23 24 16 15
15 25 26 18 17
16 26 27 19 18
17 27 28 20 19
18 28 29 21 20
19 29 30 22 21
20 30 31 23 22
21 31 32 24 23
22 33 34 26 25
23 34 35 27 26
24 35 36 28 27
25 36 37 29 28
26 37 38 30 29
27 38 39 31 30
28 39 40 32 31
29 41 42 34 33
30 42 43 35 34
31 43 44 36 35
32 44 45 37 36
33 45 46 38 37
34 46 47 39 38
35 47 48 40 39
36 49 50 42 41
37 50 51 43 42
38 51 52 44 43
39 52 53 45 44
40 53 54 46 45
41 54 55 47 46
42 55 56 48 47
43 57 58 50 49
44 58 59 51 50
45 59 60 52 51
46 60 61 53 52
47 61 62 54 53
48 62 63 55 54
49 63 64 56 55
stop