toronyi
Test the Toronyi Two-Phase Problem
This test case is constructed from the VV Test Suite toronyi comparison of FEHM and Thomas & Pierson Solution for Final Saturation.
Compares the generated files for Coordinate and FDM grid nodes with output files known to be correct. Tests all values at time 2.0. Run 2 test using toronyi_fdm.in and toronyi.in.
Test Directory: FEHM/fehmpytests/toronyi
Example File toronyi.in
**** Toronyi Two-Phase Problem **** node 36 10 11 12 13 14 15 18 19 20 21 22 23 26 27 28 29 30 31 34 35 36 37 38 39 42 43 44 45 46 47 50 51 52 53 54 55 cont avs 10 100. saturation end sol 1 -1 init 4.3000 000. 250. 0. 0. 250. 0. 0. rlp 2 0.05 0.05 1.0 1.0 0.0 0.0 0.0 0 1 0 0 1 pres 1 0 0 4.3000 .2 2 rock 1 0 0 2563. 1010. 0.0500 cond 1 0 0 1.73e-00 1.73e-00 0.0e-00 perm 1 0 0 9.869e-13 9.869e-13 0.0e-00 flow 29 29 1 0.082011 -025. 0. time 10. 78.31 0009 10 1985 07 ctrl 40 1.e-8 08 1 0 0 1 1.0 0.0 0.75 40 1.00 0.0001 010.00 1 0 coor 64 1 0.00000 182.80000 0.00000 2 152.33333 182.80000 0.00000 3 457.00000 182.80000 0.00000 4 761.66667 182.80000 0.00000 5 1066.33333 182.80000 0.00000 6 1371.00000 182.80000 0.00000 7 1675.66667 182.80000 0.00000 8 1828.00000 182.80000 0.00000 9 0.00000 167.56667 0.00000 10 152.33333 167.56667 0.00000 11 457.00000 167.56667 0.00000 12 761.66667 167.56667 0.00000 13 1066.33333 167.56667 0.00000 14 1371.00000 167.56667 0.00000 15 1675.66667 167.56667 0.00000 16 1828.00000 167.56667 0.00000 17 0.00000 137.10000 0.00000 18 152.33333 137.10000 0.00000 19 457.00000 137.10000 0.00000 20 761.66667 137.10000 0.00000 21 1066.33333 137.10000 0.00000 22 1371.00000 137.10000 0.00000 23 1675.66667 137.10000 0.00000 24 1828.00000 137.10000 0.00000 25 0.00000 106.63333 0.00000 26 152.33333 106.63333 0.00000 27 457.00000 106.63333 0.00000 28 761.66667 106.63333 0.00000 29 1066.33333 106.63333 0.00000 30 1371.00000 106.63333 0.00000 31 1675.66667 106.63333 0.00000 32 1828.00000 106.63333 0.00000 33 0.00000 76.16667 0.00000 34 152.33333 76.16667 0.00000 35 457.00000 76.16667 0.00000 36 761.66667 76.16667 0.00000 37 1066.33333 76.16667 0.00000 38 1371.00000 76.16667 0.00000 39 1675.66667 76.16667 0.00000 40 1828.00000 76.16667 0.00000 41 0.00000 45.70000 0.00000 42 152.33333 45.70000 0.00000 43 457.00000 45.70000 0.00000 44 761.66667 45.70000 0.00000 45 1066.33333 45.70000 0.00000 46 1371.00000 45.70000 0.00000 47 1675.66667 45.70000 0.00000 48 1828.00000 45.70000 0.00000 49 0.00000 15.23333 0.00000 50 152.33333 15.23333 0.00000 51 457.00000 15.23333 0.00000 52 761.66667 15.23333 0.00000 53 1066.33333 15.23333 0.00000 54 1371.00000 15.23333 0.00000 55 1675.66667 15.23333 0.00000 56 1828.00000 15.23333 0.00000 57 0.00000 0.00000 0.00000 58 152.33333 0.00000 0.00000 59 457.00000 0.00000 0.00000 60 761.66667 0.00000 0.00000 61 1066.33333 0.00000 0.00000 62 1371.00000 0.00000 0.00000 63 1675.66667 0.00000 0.00000 64 1828.00000 0.00000 0.00000 elem 4 49 1 9 10 2 1 2 10 11 3 2 3 11 12 4 3 4 12 13 5 4 5 13 14 6 5 6 14 15 7 6 7 15 16 8 7 8 17 18 10 9 9 18 19 11 10 10 19 20 12 11 11 20 21 13 12 12 21 22 14 13 13 22 23 15 14 14 23 24 16 15 15 25 26 18 17 16 26 27 19 18 17 27 28 20 19 18 28 29 21 20 19 29 30 22 21 20 30 31 23 22 21 31 32 24 23 22 33 34 26 25 23 34 35 27 26 24 35 36 28 27 25 36 37 29 28 26 37 38 30 29 27 38 39 31 30 28 39 40 32 31 29 41 42 34 33 30 42 43 35 34 31 43 44 36 35 32 44 45 37 36 33 45 46 38 37 34 46 47 39 38 35 47 48 40 39 36 49 50 42 41 37 50 51 43 42 38 51 52 44 43 39 52 53 45 44 40 53 54 46 45 41 54 55 47 46 42 55 56 48 47 43 57 58 50 49 44 58 59 51 50 45 59 60 52 51 46 60 61 53 52 47 61 62 54 53 48 62 63 55 54 49 63 64 56 55 stop