TELF.factorization.SPLITTransfer: Supervised transfer learning method via SPLIT and NMFk#

Supervised transfer learning method via SPLIT and NMFk

Available Functions#

Module Contents#

class TELF.factorization.SPLITTransfer.SPLITTransfer(Ks_known, Ks_target, Ks_split_step=1, Ks_split_min=1, H_regress_gpu=False, H_learn_method='regress', nmfk_params_known={}, nmfk_params_target={}, nmfk_params_split={}, H_regress_iters=1000, H_regress_method='fro', H_regress_init='random', transfer_regress_params={}, transfer_method='SVR', transfer_model=None, verbose=True, random_state=42)[source]#

Bases: object

fit(X_known, X_target)[source]#
fit_known(X_known)[source]#
fit_split()[source]#
fit_target(X_target)[source]#
fit_transfer(indicator)[source]#
fit_transform(X_known, X_target, indicator: ndarray)[source]#
get_feature_importances(indicator, permi_params={}, feature_names=[], plot=True, rotate_xticks=False)[source]#
get_params()[source]#
get_score(indicator)[source]#
learn_H()[source]#
predict(test=True)[source]#
set_params(parameters)[source]#
transform(indicator: ndarray)[source]#