Source code for TELF.factorization.SymNMFk

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
© 2022. Triad National Security, LLC. All rights reserved.
This program was produced under U.S. Government contract 89233218CNA000001 for Los Alamos
National Laboratory (LANL), which is operated by Triad National Security, LLC for the U.S.
Department of Energy/National Nuclear Security Administration. All rights in the program are
reserved by Triad National Security, LLC, and the U.S. Department of Energy/National Nuclear
Security Administration. The Government is granted for itself and others acting on its behalf a
nonexclusive, paid-up, irrevocable worldwide license in this material to reproduce, prepare
derivative works, distribute copies to the public, perform publicly and display publicly, and to permit
others to do so.
"""
import os
import sys
import time
import socket
import warnings
import numpy as np
import scipy.sparse
from tqdm import tqdm
from pathlib import Path
import concurrent.futures
from collections import defaultdict
from datetime import datetime, timedelta
from threading import Lock

from .utilities.take_note import take_note, take_note_fmat, append_to_note
from .utilities.plot_NMFk import plot_SymNMFk, plot_consensus_mat
from .utilities.organize_n_jobs import organize_n_jobs
from .utilities.data_host_transfer_helpers import put_X_gpu, put_A_gpu
from .utilities.run_factorization_helpers import run_symnmf
from .utilities.perturbation_helpers import perturb_X
from .utilities.initialization_helpers import init_W
from .decompositions.sym_nmf import sym_nmf_newt
from .decompositions.utilities.math_utils import get_pac
from .decompositions.utilities.concensus_matrix import reorder_con_mat
from .decompositions.utilities.similarity_matrix import get_connectivity_matrix, dist2, scale_dist3


try:
    import cupy as cp
except Exception:
    cp = None
    cupyx = None

try:
    from mpi4py import MPI
except Exception:
    MPI = None


def _perturb_parallel_wrapper(
    perturbation,
    gpuid,
    epsilon,
    perturb_type,
    graph_type,
    similarity_type,
    nearest_neighbors,
    X,
    k,
    mask,
    use_gpu,
    init_type,
    nmf_params,
    nmf):

    # Perturb X
    Xq = perturb_X(X, perturbation, epsilon, perturb_type)

    # Compute the similarity matrix
    if graph_type == 'full' and similarity_type == 'gaussian':
        Dq = dist2(Xq, Xq)
        Aq = scale_dist3(Dq, nearest_neighbors)
    else:
        raise ValueError('Unknown graph_type and/or similarity_type')

    # Initialize W
    # Dq = dist2(X, X)
    # Aq = scale_dist3(Dq, nearest_neighbors)
    #print(Aq)
    Wq = init_W(Aq, k, mask=mask, init_type=init_type, seed=perturbation)
    
    
    # transfer to GPU
    if use_gpu:
        Aq = put_X_gpu(Aq, gpuid)
        Wq = put_A_gpu(Wq, gpuid)

    Wq, obj = run_symnmf(Aq, Wq, nmf, nmf_params, use_gpu, gpuid)
    
    # transfer to CPU
    if use_gpu:
        Wq =  cp.asnumpy(Wq)
        obj = cp.asnumpy(obj)
        cp._default_memory_pool.free_all_blocks()
    
    return Wq, obj


def _symnmf_parallel_wrapper(
        n_perturbs, 
        nmf, 
        nmf_params,
        X=None, 
        k=None,
        epsilon=None, 
        gpuid=0, 
        use_gpu=True,
        perturb_type="uniform",
        init_type="random",
        graph_type="full",
        similarity_type="gaussian",
        nearest_neighbors=7,
        mask=None, 
        consensus_mat=False,
        save_output=True,
        save_path="",
        experiment_name="",
        collect_output=False,
        logging_stats={},
        start_time=time.time(),
        n_jobs=1,
        perturb_multiprocessing=False,
        perturb_verbose=False,
        lock=None,
        note_name="experiment",
):

    assert graph_type in {'full'}, 'Supported graph types are ["full"]'
    assert similarity_type in {'gaussian'}, 'Supported similarity metrics are ["gaussian"]'
    
    #
    # run for each perturbations
    #
    perturb_job_data = {
        "epsilon":epsilon,
        "perturb_type":perturb_type,
        "graph_type": graph_type,
        "similarity_type": similarity_type,
        "nearest_neighbors": nearest_neighbors,
        "X":X,
        "k":k,
        "mask":mask,
        "use_gpu":use_gpu,
        "init_type":init_type,
        "nmf_params":nmf_params,
        "nmf":nmf,
    }
    
    W_all, obj_all = [], []
    connectivity_matrices = []
    
    # single job or parallel over Ks
    if n_jobs == 1 or not perturb_multiprocessing:
        for perturbation in tqdm(range(n_perturbs), disable=not perturb_verbose, total=n_perturbs):
            W, obj = _perturb_parallel_wrapper(perturbation=perturbation, gpuid=gpuid, **perturb_job_data)
            W_all.append(W)
            obj_all.append(obj)
            B = get_connectivity_matrix(np.argmax(W, 1))
            connectivity_matrices.append(B)
            
    # multiple jobs over perturbations
    else:
        executor = concurrent.futures.ThreadPoolExecutor(max_workers=n_jobs)
        futures = [executor.submit(_perturb_parallel_wrapper, gpuid=pidx % n_jobs, perturbation=perturbation, **perturb_job_data) for pidx, perturbation in enumerate(range(n_perturbs))]
        all_perturbation_results = [future.result() for future in tqdm(concurrent.futures.as_completed(futures), disable=not perturb_verbose, total=n_perturbs)]

        for W, obj in all_perturbation_results:
            W_all.append(W)
            obj_all.append(obj)
            B = get_connectivity_matrix(np.argmax(W, 1))
            connectivity_matrices.append(B)
    
    #
    # organize solutions from each perturbations
    #
    obj_all = np.array(obj_all)
    avg_W = np.mean(np.stack(W_all, axis=0), axis=0)
    
    #
    # get the consensus matrix
    #
    coeff_k = 0
    con_mat_k = None
    reordered_con_mat = None
    if consensus_mat:
        con_mat_k = np.stack(connectivity_matrices, axis=0)
        con_mat_k = np.mean(con_mat_k, axis=0)
        reordered_con_mat, coeff_k = reorder_con_mat(con_mat_k, k)
        
    #
    # save output factors and the plot
    #
    if save_output: 
        con_fig_name = os.path.join(f'{save_path}', f'k_{k}_con_mat.png')
        plot_consensus_mat(reordered_con_mat, con_fig_name)
        
        save_data = {
            "avg_W": avg_W,
            "avg_obj": np.mean(obj_all),
            "reordered_con_mat": reordered_con_mat,
            "cophenetic_coeff": coeff_k
        }
        np.savez_compressed( 
            os.path.join(f'{save_path}', f'W_k={k}.npz'),
            **save_data
        )
        
        plot_data = dict()
        for key in logging_stats:
            if key == 'k':
                plot_data["k"] = k
            elif key == 'err_mean':
                err_mean = np.mean(obj_all)
                plot_data["err_mean"] = '{0:.3f}'.format(err_mean)
            elif key == 'err_std':
                err_std = np.std(obj_all)
                plot_data["err_std"] = '{0:.3f}'.format(err_std)
            elif key == 'time':
                elapsed_time = time.time() - start_time
                elapsed_time = timedelta(seconds=elapsed_time)
                plot_data["time"] = str(elapsed_time).split('.')[0]
            else:
                warnings.warn(f'[tELF]: Encountered unknown logging metric "{key}"', RuntimeWarning)
                plot_data[key] = 'N/A'
        take_note_fmat(save_path, name=note_name, lock=lock, **plot_data)

    #
    # collect results
    #
    results_k = {
        "Ks":k,
        "W":avg_W,
        "err_mean":np.mean(obj_all),
        "err_std":np.std(obj_all),
        "cophenetic_coeff":coeff_k,
        "reordered_con_mat":reordered_con_mat
    }
    return results_k


[docs] class SymNMFk: def __init__( self, n_perturbs=20, n_iters=1000, epsilon=0.015, init_type="random", perturb_type="uniform", n_jobs=1, n_nodes=1, use_gpu=False, save_path="", save_output=True, collect_output=False, verbose=False, nmf_verbose=False, perturb_verbose = False, transpose=False, nmf_method="newton", nmf_obj_params={}, graph_type="full", similarity_type="gaussian", nearest_neighbors=7, use_consensus_stopping=False, perturb_multiprocessing=False, calculate_pac=True, mask=None, pac_thresh=0, get_plot_data=False): if n_nodes > 1 and MPI is None: sys.exit("Attempted to use n_nodes>1 but MPI is not available!") # overwrite NMF params with higher level definitions nmf_obj_params['n_iters'] = n_iters nmf_obj_params['use_consensus_stopping'] = use_consensus_stopping # # Object hyper-parameters # self.pac_thresh=pac_thresh self.n_perturbs = n_perturbs self.init_type = init_type self.perturb_type = perturb_type self.n_iters = n_iters self.epsilon = epsilon self.save_path = save_path self.save_output = save_output self.use_gpu = use_gpu self.verbose = verbose self.nmf_verbose = nmf_verbose self.perturb_verbose = perturb_verbose self.transpose = transpose self.collect_output = collect_output self.n_jobs = n_jobs self.n_nodes = n_nodes self.nmf = None self.nmf_method = nmf_method self.nmf_obj_params = nmf_obj_params self.graph_type=graph_type self.similarity_type=similarity_type self.nearest_neighbors=nearest_neighbors self.consensus_mat = True self.use_consensus_stopping = use_consensus_stopping self.mask = mask self.calculate_pac = calculate_pac self.get_plot_data = get_plot_data self.perturb_multiprocessing = perturb_multiprocessing # warnings if self.calculate_pac and not self.consensus_mat: self.consensus_mat = True warnings.warn("consensus_mat was False when calculate_pac was True! consensus_mat changed to True.") # Check the number of perturbations is correct if self.n_perturbs < 2: raise Exception("n_perturbs should be at least 2!") # check that the perturbation type is valid assert perturb_type in [ "uniform", "poisson"], "Invalid perturbation type. Choose from uniform, poisson" # organize n_jobs self.n_jobs, self.use_gpu = organize_n_jobs(use_gpu, n_jobs) # create a shared lock self.lock = Lock() # # Save information from the solution # self.total_exec_seconds = 0 self.experiment_name = "" # # Prepare NMF function # avail_nmf_methods = ["newton"] if self.nmf_method not in avail_nmf_methods: raise ValueError(f"Invalid NMF method is selected. Choose from: " \ f"{','.join(avail_nmf_methods)}") if self.nmf_method == "newton": self.nmf = sym_nmf_newt self.nmf_obj_params['n_iters'] = self.n_iters self.nmf_obj_params['use_gpu'] = self.use_gpu self.nmf_obj_params['use_consensus_stopping'] = self.use_consensus_stopping supported_args = {'n_iters', 'use_gpu', 'tol', 'sigma', 'beta', 'use_consensus_stopping', 'debug'} assert set(self.nmf_obj_params.keys()).issubset(supported_args), \ f"nmf_obj_params contains unexpected arguments for {self.nmf_method} method" if self.verbose: print('Performing NMF with ', self.nmf_method)
[docs] def fit(self, X, Ks, name="SymNMFk", note=""): # # check X format # assert scipy.sparse._csr.csr_matrix == type(X) or np.ndarray == type(X), "X should be np.ndarray or scipy.sparse._csr.csr_matrix" if X.dtype != np.dtype(np.float32): warnings.warn( f'X is data type {X.dtype}. Whic is not float32. Higher precision will result in significantly longer runtime!') # # Error check # if len(Ks) == 0: raise Exception("Ks range is 0!") if max(Ks) >= X.shape[0]: raise Exception("Maximum rank k to try in Ks should be k<X.shape[0]") # # MPI # if self.n_nodes > 1: comm = MPI.COMM_WORLD rank = comm.Get_rank() Ks = self.__chunk_Ks(Ks, n_chunks=self.n_nodes)[rank] note_name = f'{rank}_experiment' if self.verbose: print("Rank=", rank, "Host=", socket.gethostname(), "Ks=", Ks) else: note_name = f'experiment' comm = None rank = 0 # # Setup # self.experiment_name = ( str(name) + "_" + str(self.n_perturbs) + "perts_" + str(self.n_iters) + "iters_" + str(self.epsilon) + "eps_" ) save_path = os.path.join(self.save_path, self.experiment_name) if (self.n_jobs > len(Ks)) and not self.perturb_multiprocessing: self.n_jobs = len(Ks) elif (self.n_jobs > self.n_perturbs) and self.perturb_multiprocessing: self.n_jobs = self.n_perturbs if self.transpose: if isinstance(X, np.ndarray): X = X.T elif scipy.sparse.issparse(X): X = X.T.asformat("csr") else: raise Exception("I do not know how to transpose type " + str(type(X))) # init the stats header # this will setup the logging for all configurations of nmfk stats_header = {'k': 'k', 'err_mean': 'Error Mean', 'err_std': 'Error STD-DEV'} stats_header['time'] = 'Time Elapsed' # start the file logging (only root node needs to do this step) if self.save_output and ((self.n_nodes == 1) or (self.n_nodes > 1 and rank == 0)): try: if not Path(save_path).is_dir(): Path(save_path).mkdir(parents=True) except Exception as e: print(e) if self.n_nodes > 1: comm.Barrier() time.sleep(1) # logging if self.save_output: if not Path(save_path).is_dir(): Path(save_path).mkdir(parents=True) append_to_note(["#" * 100], save_path, name=note_name, lock=self.lock) append_to_note(["start_time= " + str(datetime.now()), "name=" + str(name), "note=" + str(note)], save_path, name=note_name, lock=self.lock) append_to_note(["#" * 100], save_path, name=note_name, lock=self.lock) object_notes = vars(self).copy() del object_notes["total_exec_seconds"] del object_notes["nmf"] take_note(object_notes, save_path, name=note_name, lock=self.lock) append_to_note(["#" * 100], save_path, name=note_name, lock=self.lock) notes = {} notes["Ks"] = Ks notes["data_type"] = type(X) notes["num_elements"] = np.prod(X.shape) notes["num_nnz"] = len(X.nonzero()[0]) notes["sparsity"] = len(X.nonzero()[0]) / np.prod(X.shape) notes["X_shape"] = X.shape take_note(notes, save_path, name=note_name, lock=self.lock) append_to_note(["#" * 100], save_path, name=note_name, lock=self.lock) take_note_fmat(save_path, name=note_name, lock=self.lock, **stats_header) if self.n_nodes > 1: comm.Barrier() # # Begin SymNMFk # start_time = time.time() job_data = { "n_perturbs":self.n_perturbs, "nmf":self.nmf, "init_type":self.init_type, "nmf_params":self.nmf_obj_params, "X":X, "epsilon":self.epsilon, "use_gpu":self.use_gpu, "perturb_type":self.perturb_type, "mask":self.mask, "consensus_mat":self.consensus_mat, "save_output":self.save_output, "save_path":save_path, "experiment_name":self.experiment_name, "collect_output":self.collect_output, "logging_stats":stats_header, "start_time":start_time, "graph_type": self.graph_type, "similarity_type": self.similarity_type, "nearest_neighbors": self.nearest_neighbors, "n_jobs":self.n_jobs, "perturb_multiprocessing":self.perturb_multiprocessing, "perturb_verbose":self.perturb_verbose, "lock":self.lock, "note_name":note_name } # Single job or parallel over perturbations if self.n_jobs == 1 or self.perturb_multiprocessing: all_k_results = [] for k in tqdm(Ks, total=len(Ks), disable=not self.verbose): k_result = _symnmf_parallel_wrapper(gpuid=0, k=k, **job_data) all_k_results.append(k_result) # multiprocessing over each K else: executor = concurrent.futures.ThreadPoolExecutor(max_workers=self.n_jobs) futures = [executor.submit(_symnmf_parallel_wrapper, gpuid=kidx % self.n_jobs, k=k, **job_data) for kidx, k in enumerate(Ks)] all_k_results = [future.result() for future in tqdm(concurrent.futures.as_completed(futures), total=len(Ks), disable=not self.verbose)] # # Collect results if multi-node # if self.n_nodes > 1: comm.Barrier() all_share_data = comm.gather(all_k_results, root=0) all_k_results = [] if rank == 0: for node_k_results in all_share_data: all_k_results.extend(node_k_results) else: sys.exit(0) # # Sort results # collected_Ks = [] for k_results in all_k_results: collected_Ks.append(k_results["Ks"]) all_k_results_tmp = [] Ks_sort_indices = np.argsort(np.array(collected_Ks)) for idx in Ks_sort_indices: all_k_results_tmp.append(all_k_results[idx]) all_k_results = all_k_results_tmp # # combine results # combined_result = defaultdict(list) for k_results in all_k_results: for key, value in k_results.items(): combined_result[key].append(value) # # revert to original Ks # if self.n_nodes > 1: Ks = np.array(collected_Ks)[Ks_sort_indices] # # Finalize # if self.n_nodes == 1 or (self.n_nodes > 1 and rank == 0): # holds the final results results = {} total_exec_seconds = time.time() - start_time results["time"] = total_exec_seconds # * plot cophenetic coefficients combined_result["pac"] = [] if self.consensus_mat: if self.calculate_pac: consensus_tensor = np.array(combined_result["reordered_con_mat"]) combined_result["pac"] = np.array(get_pac(consensus_tensor, use_gpu=self.use_gpu)) argmin = np.argmin(combined_result["pac"]) if combined_result["pac"][argmin] <= self.pac_thresh: results["clusters"] = np.argmax(combined_result["W"][argmin], 1) else: warnings.warn(f'Minimum PAC is {combined_result["pac"][argmin]} and the threshold is {self.pac_thresh}. Not performing clustering!') # final plot if self.save_output: plot_SymNMFk( combined_result, self.experiment_name, save_path, plot_final=True, ) append_to_note(["#" * 100], save_path, name=note_name, lock=self.lock) append_to_note(["end_time= "+str(datetime.now())], save_path, name=note_name, lock=self.lock) append_to_note( ["total_time= "+str(time.time() - start_time) + " (seconds)"], save_path, name=note_name, lock=self.lock) if self.get_plot_data: results["plot_data"] = combined_result results["W"] = combined_result["W"] results["reordered_con_mat"] = combined_result["reordered_con_mat"] return results
def __chunk_Ks(self, Ks: list, n_chunks=2) -> list: # correct n_chunks if needed if len(Ks) < n_chunks: n_chunks = len(Ks) chunks = list() for _ in range(n_chunks): chunks.append([]) for idx, ii in enumerate(Ks): chunk_idx = idx % n_chunks chunks[chunk_idx].append(ii) return chunks