Source code for TELF.factorization.decompositions.nmf_kl_mu

from .utilities.generic_utils import get_np, get_scipy, update_opts
from .utilities.math_utils import (
    kl_divergence,
    sparse_divide_product,
    nz_indices,
    nan_to_num,
)
from tqdm import tqdm
from .utilities.concensus_matrix import compute_connectivity_mat


[docs] def H_update(X, W, H, opts=None, nz_rows=None, nz_cols=None, use_gpu=True, mask=None): r""" Multiplicative update algorithm for the right factor, :math:`H`, in a nonnegative optimization with Kullback–Leibler divergence loss function. .. math:: \underset{H}{\operatorname{minimize}} &= \operatorname{D}_{KL}(X, W H) = \sum_{i,j} X_{i,j} \log \frac{X_{i,j}}{(WH)_{i,j}} - X_{i,j} + (WH)_{i,j} \\ \text{subject to} & \quad H \geq 0 Args: X (ndarray, sparse matrix): Nonnegative m by n matrix to decompose. W (ndarray): Nonnegative m by k left factor of X. H (ndarray): Nonnegative k by n initialization of right factor of X. opts (dict), optional: Dictionary or optional arguments. 'hist' (list): list to append the objective function to. 'niter' (int): number of iterations. nz_rows (ndarray), optional: If X is sparse, nz_rows is a 1d array of the row indices when X is in csc format. Useful when calling this function multiple times with the same sparse matrix X. nz_cols (ndarray), optional: If X is sparse, nz_cols is a 1d array of the col indices when X is in csc format. Useful when calling this function multiple times with the same sparse matrix X. Returns: H (ndarray): Nonnegative k by n right factor of X. """ if mask is not None: mask = mask.T return W_update(X.T, H.T, W.T, opts=opts, use_gpu=use_gpu, mask=mask, nz_rows=nz_cols, nz_cols=nz_rows).T
[docs] def W_update(X, W, H, opts=None, nz_rows=None, nz_cols=None, use_gpu=True, mask=None): r""" Multiplicative update algorithm for the left factor, :math:`W`, in a nonnegative optimization with Kullback–Leibler divergence loss function. .. math:: \underset{W}{\operatorname{minimize}} &= \operatorname{D}_{KL}(X, W H) = \sum_{i,j} X_{i,j} \log \frac{X_{i,j}}{(WH)_{i,j}} - X_{i,j} + (WH)_{i,j} \\ \text{subject to} & \quad W \geq 0 Args: X (ndarray, sparse matrix): Nonnegative m by n matrix to decompose. W (ndarray): Nonnegative m by k initialization of left factor of X. H (ndarray): Nonnegative k by n right factor of X. opts (dict), optional: Dictionary or optional arguments. 'hist' (list): list to append the objective function to. 'niter' (int): number of iterations. nz_rows (ndarray), optional: If X is sparse, nz_rows is a 1d array of the row indices when X is in csr format. Useful when calling this function multiple times with the same sparse matrix X. nz_cols (ndarray), optional: If X is sparse, nz_cols is a 1d array of the col indices when X is in csr format. Useful when calling this function multiple times with the same sparse matrix X. Returns: W (ndarray): Nonnegative m by k left factor of X. """ default_opts = {"niter": 1000, "hist": None} opts = update_opts(default_opts, opts) np = get_np(X, use_gpu=use_gpu) scipy = get_scipy(X, use_gpu=use_gpu) dtype = X.dtype if np.issubdtype(dtype, np.integer): eps = np.iinfo(dtype).eps elif np.issubdtype(dtype, np.floating): eps = np.finfo(dtype).eps else: raise Exception("Unknown data type!") if mask is not None: X[mask] = 0 # * set NaNs to zeros first, will update later W = np.maximum(W.astype(dtype), eps) H = H.astype(dtype) H_norm = np.sum(H, axis=1, keepdims=True).T + eps if mask is not None: for i in range(opts["niter"]): if scipy.sparse.issparse(X): X._has_canonical_format = True XHT = X.dot(H.T) else: XHT = X @ H.T W /= (W @ HHT + eps) W *= XHT if (i + 1) % 10 == 0: W = np.maximum(W, eps) Xhat = W@H X[mask] = Xhat[mask] # *update NaN spots if opts["hist"] is not None: opts["hist"].append(fro_norm(X - W @ H)) else: if scipy.sparse.issparse(X): # bug in setting has_canonical_format flag in cupy # https://github.com/cupy/cupy/issues/2365 # issue is closed, but still not fixed. X._has_canonical_format = True else: pass for i in range(opts["niter"]): if scipy.sparse.issparse(X): W *= ((sparse_divide_product(X, W, H, nz_rows, nz_cols, use_gpu=use_gpu)).dot(H.T)) / H_norm else: W *= ((X / (W @ H + eps)) @ H.T) / H_norm if (i + 1) % 10 == 0: W = np.maximum(W, eps) if opts["hist"] is not None: opts["hist"].append(kl_divergence(X, np.maximum(W @ H, eps))) return W
[docs] def nmf(X, W, H, niter=1000, hist=None, W_opts={"niter": 1, "hist": None}, H_opts={"niter": 1, "hist": None}, use_gpu=True, nmf_verbose=True, mask=None, use_consensus_stopping=0 ): r""" Multiplicative update algorithm for a nonnegative optimization with Kullback–Leibler divergence loss function. .. math:: \underset{W,H}{\operatorname{minimize}} &= \operatorname{D}_{KL}(X, W H) = \sum_{i,j} X_{i,j} \log \frac{X_{i,j}}{(WH)_{i,j}} - X_{i,j} + (WH)_{i,j} \\ \text{subject to} & \quad W \geq 0 \\ & \quad H \geq 0 Args: X (ndarray, sparse matrix): Nonnegative m by n matrix to decompose. W (ndarray): Nonnegative m by k initialization of left factor of X. H (ndarray): Nonnegative k by n initialization of right factor of X. opts (dict), optional: Dictionary or optional arguments. 'hist' (list): list to append the objective function to. 'niter' (int): number of iterations. 'W_opts' (dict): options dictionary for :meth:`W_update`. 'H_opts' (dict): options dictionary for :meth:`H_update`. Returns: W (ndarray): Nonnegative m by k left factor of X. H (ndarray): Nonnegative k by n right factor of X. """ np = get_np(X, use_gpu=use_gpu) scipy = get_scipy(X, use_gpu=use_gpu) dtype = X.dtype # * Nans currently only works with numpy if mask is not None: X[mask] = 0 # * set NaNs to zeros first, will update later if np.issubdtype(dtype, np.integer): eps = np.iinfo(dtype).eps elif np.issubdtype(dtype, np.floating): eps = np.finfo(dtype).eps else: raise Exception("Unknown data type!") W = np.maximum(W.astype(dtype), eps) H = np.maximum(H.astype(dtype), eps) if scipy.sparse.issparse(X): H_args, W_args = {}, {} H_args["nz_rows"], H_args["nz_cols"] = nz_indices(X, use_gpu=use_gpu) W_args["nz_rows"], W_args["nz_cols"] = nz_indices(X, use_gpu=use_gpu) else: pass if use_consensus_stopping > 0: conmatold = 0 conmat = 0 inc = 0 for i in tqdm(range(niter), disable=nmf_verbose == False): H = H_update(X, W, H, H_opts, use_gpu=use_gpu, mask=mask) W = W_update(X, W, H, W_opts, use_gpu=use_gpu, mask=mask) if i % 10 == 0: H = np.maximum(H.astype(dtype), eps) W = np.maximum(W.astype(dtype), eps) if hist is not None: hist.append(kl_divergence(X, np.maximum(W @ H, eps))) if mask is not None: # *update mask Xhat = W@H X[mask] = Xhat[mask] # * checking the consensus stopping if use_consensus_stopping > 0: conmat = compute_connectivity_mat(H) if np.sum(conmat != conmatold) == 0: inc += 1 if inc >= use_consensus_stopping: break else: conmatold = conmat Wsum = np.sum(W, 0, keepdims=True) H = H * Wsum.T W = W / Wsum return (W, H, {})