Source code for TELF.factorization.utilities.plot_NMFk

import matplotlib.pyplot as plt
import numpy as np
import os 

[docs] def plot_RESCALk(data, k_predict, name, path, plot_predict=False, plot_final=False, simple_plot=False, calculate_error=True): fig, ax1 = plt.subplots(figsize=(8, 8), dpi=80) # silhouette color = "tab:red" ax1.set_xlabel("latent dimension") ax1.set_ylabel("silhouette", color=color) # sill ax1.plot( list(data["Ks"]), data["sils_min"], "o-", color=color, label="W minimum silhouette", ) # add a vertical line for xtick k-values to make it easier to see which point corresponds to which k if not isinstance(data["sils_min"], np.float64): # if plot contains more than one k-value for xtick in ax1.get_xticks(): if xtick in data["Ks"]: y = data["sils_min"][np.where(data["Ks"] == xtick)[0][0]] # get the y value that corresponds to xtick plt.vlines(xtick, min([0, np.min(data["sils_min"])]), y, colors='black', alpha=0.4) if not simple_plot: ax1.errorbar( list(data["Ks"]), data["sils_mean"], yerr=data["sils_std"], fmt="^:", color="tab:green", label=r"W mean +- std silhouette", ) ax1.set_ylim(min([0, np.min(data["sils_min"])]), 1) ax1.tick_params(axis="y", labelcolor=color) # k prediction if plot_predict: ax1.axvline( x=list(data["Ks"])[list(data["Ks"]).index(k_predict)], lw=5, alpha=0.8, color="lightsteelblue", label="K Predict= " + str(k_predict), ) # legend ax1.legend( loc="upper left", bbox_to_anchor=(0.5, -0.07), fancybox=True, shadow=True, ) # relative error if calculate_error: ax2 = ax1.twinx() color = "tab:blue" ax2.set_ylabel("relative error", color=color) ax2.plot( list(data["Ks"]), data["err_reg"], "o-", color=color, label="regression relative error", ) if not simple_plot: ax2.errorbar( list(data["Ks"]), data["err_mean"], yerr=data["err_std"], fmt="^:", color="tab:orange", label="perturbation relative error mean +- std", ) ax2.tick_params(axis="y", labelcolor=color) ax2.legend( loc="upper right", bbox_to_anchor=(0.5, -0.07), fancybox=True, shadow=True, handlelength=4, ) ax1.legend( loc="upper right", bbox_to_anchor=(.9, -0.07), fancybox=True, shadow=True, handlelength=4, ) # finalize fig.tight_layout() plt.title(name + " " + str(min(list(data["Ks"]))) + "-" + str(max(list(data["Ks"])))) plt.ioff() # save if plot_final: plt.savefig( os.path.join(f'{path}', f'FINAL_k={min(list(data["Ks"]))}-{max(list(data["Ks"]))}.png'), bbox_inches="tight", ) else: plt.savefig( os.path.join(f'{path}', f'k={min(list(data["Ks"]))}-{max(list(data["Ks"]))}.png'), bbox_inches="tight", ) plt.close("all")
[docs] def plot_SymNMFk(data, name, path, plot_final=False): pac = False if "pac" in data and len(data["pac"]) > 0: pac = True fig, ax1 = plt.subplots(figsize=(8, 8), dpi=80) # silhouette color = "black" ax1.set_xlabel("latent dimension") ax1.set_ylabel("PAC", color=color) # add a vertical line for xtick k-values to make it easier to see which point corresponds to which k if not isinstance(data["pac"], np.float64): # if plot contains more than one k-value for xtick in ax1.get_xticks(): if xtick in data["Ks"]: y = data["pac"][np.where(data["Ks"] == xtick)[0][0]] # get the y value that corresponds to xtick plt.vlines(xtick, min(data["pac"] + [0]), y, colors='black', alpha=0.4) # pac color = "black" ax1.plot( list(data["Ks"]), data["pac"], linestyle="--", marker="s", color=color, label="PAC", ) ax1.set_ylim(min(0, np.min(data["pac"])), 1) ax1.tick_params(axis="y", labelcolor=color) # legend ax1.legend( loc="upper left", bbox_to_anchor=(0.5, -0.07), fancybox=True, shadow=True, ) # relative error ax2 = ax1.twinx() if set(data["err_mean"]) != set([0.0]): color = "tab:blue" ax2.set_ylabel("Objective", color=color) ax2.plot( list(data["Ks"]), data["err_mean"], "o-", color=color, label="Objective", ) ax2.tick_params(axis="y", labelcolor=color) ax2.legend( loc="upper right", bbox_to_anchor=(0.5, -0.07), fancybox=True, shadow=True, ) # finalize fig.tight_layout() plt.title(name + " " + str(min(list(data["Ks"]))) + "-" + str(max(list(data["Ks"])))) plt.ioff() # save if plot_final: plt.savefig( os.path.join(f'{path}', f'FINAL_k={min(list(data["Ks"]))}-{max(list(data["Ks"]))}.png'), bbox_inches="tight", ) else: plt.savefig( os.path.join(f'{path}', f'k={min(list(data["Ks"]))}-{max(list(data["Ks"]))}.png'), bbox_inches="tight", ) plt.close("all")
[docs] def plot_BNMFk(Ks, sils, bool_err, path=None, name=None): fig, ax1 = plt.subplots(figsize=(8, 8), dpi=80) plt.rcParams['svg.fonttype'] = 'none' color = 'tab:red' ax1.set_xlabel('latent dimension') ax1.set_ylabel('silhouette', color=color) ax1.plot(Ks, sils, 'o-', color=color) ax1.tick_params(axis='y', labelcolor=color) ax2 = ax1.twinx() color = 'tab:blue' ax2.set_ylabel('boolean relative error', color=color) ax2.plot(Ks, bool_err, '^-', color=color, label='bool_err') ax2.tick_params(axis='y', labelcolor=color) plt.title(str(name) + " " + str(min(list(Ks))) + "-" + str(max(list(Ks)))) fig.tight_layout() plt.ioff() if path is not None: plt.savefig( os.path.join(f'{path}', f'k={min(list(Ks))}-{max(list(Ks))}.png'), bbox_inches="tight", ) plt.close("all") return None
[docs] def plot_NMFk( data, k_predict, name, path, plot_predict=False, plot_final=False, simple_plot=False, calculate_error=True, Ks_not_computed=[] ): pac = False if "pac" in data and len(data["pac"]) > 0: pac = True fig, ax1 = plt.subplots(figsize=(12, 8), dpi=100) # silhouette color = "tab:red" ax1.set_xlabel("latent dimension") if pac: ax1.set_ylabel("silhouette - pac", color="black") else: ax1.set_ylabel("silhouette", color=color) # W sill ax1.plot( list(data["Ks"]), data["sils_min_W"], "o-", color=color, label="W minimum silhouette", ) # H sill ax1.plot( list(data["Ks"]), data["sils_min_H"], "o-.", color="purple", label="H minimum silhouette", ) # add a vertical line for xtick k-values to make it easier to see which point corresponds to which k if not isinstance(data["sils_min_W"], np.float64): # if plot contains more than one k-value for xtick in ax1.get_xticks(): if xtick in data["Ks"]: y = data["sils_min_W"][np.where(data["Ks"] == xtick)[0][0]] # get the y value that corresponds to xtick plt.vlines(xtick, min([0, np.min(data["sils_min_H"]), np.min(data["sils_min_W"])]), y, colors='black', alpha=0.4) for empty_k in Ks_not_computed: plt.vlines(empty_k, ymin=min([0, np.min(data["sils_min_H"]), np.min(data["sils_min_W"])]), ymax=1, colors='black', linewidth=2, alpha=0.9) if not simple_plot: ax1.errorbar( list(data["Ks"]), data["sils_mean_W"], yerr=data["sils_std_W"], fmt="^:", color="tab:green", label=r"W mean +- std silhouette", ) ax1.errorbar( list(data["Ks"]), data["sils_mean_H"], yerr=data["sils_std_H"], fmt="^-.", color="tab:green", label=r"H mean +- std silhouette", ) # pac if pac: color = "black" ax1.plot( list(data["Ks"]), data["pac"], linestyle="--", marker="s", color=color, label="PAC", ) ax1.set_ylim(min([0, np.min(data["sils_min_H"]), np.min(data["sils_min_W"]), np.min(data["pac"])]), 1) else: ax1.set_ylim(min([0, np.min(data["sils_min_H"]), np.min(data["sils_min_W"])]), 1) ax1.tick_params(axis="y", labelcolor=color) # k prediction if plot_predict: ax1.axvline( x=list(data["Ks"])[list(data["Ks"]).index(k_predict)], lw=5, alpha=0.8, color="lightsteelblue", label="K Predict= " + str(k_predict), ) # legend ax1.legend( loc="upper left", bbox_to_anchor=(0.5, -0.07), fancybox=True, shadow=True, ) # relative error if calculate_error: ax2 = ax1.twinx() color = "tab:blue" ax2.set_ylabel("relative error", color=color) ax2.plot( list(data["Ks"]), data["err_reg"], "o-", color=color, label="regression relative error", ) if not simple_plot: ax2.errorbar( list(data["Ks"]), data["err_mean"], yerr=data["err_std"], fmt="^:", color="tab:orange", label="perturbation relative error mean +- std", ) ax2.tick_params(axis="y", labelcolor=color) ax2.legend( loc="upper right", bbox_to_anchor=(0.5, -0.07), fancybox=True, shadow=True, handlelength=4, ) ax1.legend( loc="upper right", bbox_to_anchor=(.9, -0.07), fancybox=True, shadow=True, handlelength=4, ) # finalize fig.tight_layout() plt.title(name + " " + str(min(list(data["Ks"]))) + "-" + str(max(list(data["Ks"])))) plt.ioff() # save if plot_final: if len(Ks_not_computed) > 0: kmin = min(min(list(data["Ks"])), min(list(Ks_not_computed))) kmax = max(max(list(data["Ks"])), max(list(Ks_not_computed))) else: kmin = min(list(data["Ks"])) kmax = max(list(data["Ks"])) plt.savefig( os.path.join(f'{path}', f'FINAL_k={kmin}-{kmax}.png'), bbox_inches="tight", ) else: plt.savefig( os.path.join(f'{path}', f'k={min(list(data["Ks"]))}-{max(list(data["Ks"]))}.png'), bbox_inches="tight", ) plt.close("all")
[docs] def plot_consensus_mat(C, figname): plt.figure() try: plt.imshow(C) plt.colorbar() plt.savefig(figname) except: pass plt.close("all")
[docs] def plot_cophenetic_coeff(Ks, coeff, figname): plt.figure() plt.plot(Ks, coeff) plt.xlabel('k') plt.ylabel('Cophenetic Correlation') plt.savefig(figname) plt.close("all")