import matplotlib.pyplot as plt
import numpy as np
import os
[docs]
def plot_RESCALk(data, k_predict, name, path, plot_predict=False, plot_final=False, simple_plot=False, calculate_error=True):
fig, ax1 = plt.subplots(figsize=(8, 8), dpi=80)
# silhouette
color = "tab:red"
ax1.set_xlabel("latent dimension")
ax1.set_ylabel("silhouette", color=color)
# sill
ax1.plot(
list(data["Ks"]),
data["sils_min"],
"o-",
color=color,
label="W minimum silhouette",
)
# add a vertical line for xtick k-values to make it easier to see which point corresponds to which k
if not isinstance(data["sils_min"], np.float64): # if plot contains more than one k-value
for xtick in ax1.get_xticks():
if xtick in data["Ks"]:
y = data["sils_min"][np.where(data["Ks"] == xtick)[0][0]] # get the y value that corresponds to xtick
plt.vlines(xtick, min([0, np.min(data["sils_min"])]), y, colors='black', alpha=0.4)
if not simple_plot:
ax1.errorbar(
list(data["Ks"]),
data["sils_mean"],
yerr=data["sils_std"],
fmt="^:",
color="tab:green",
label=r"W mean +- std silhouette",
)
ax1.set_ylim(min([0, np.min(data["sils_min"])]), 1)
ax1.tick_params(axis="y", labelcolor=color)
# k prediction
if plot_predict:
ax1.axvline(
x=list(data["Ks"])[list(data["Ks"]).index(k_predict)],
lw=5,
alpha=0.8,
color="lightsteelblue",
label="K Predict= " + str(k_predict),
)
# legend
ax1.legend(
loc="upper left",
bbox_to_anchor=(0.5, -0.07),
fancybox=True,
shadow=True,
)
# relative error
if calculate_error:
ax2 = ax1.twinx()
color = "tab:blue"
ax2.set_ylabel("relative error", color=color)
ax2.plot(
list(data["Ks"]),
data["err_reg"],
"o-",
color=color,
label="regression relative error",
)
if not simple_plot:
ax2.errorbar(
list(data["Ks"]),
data["err_mean"],
yerr=data["err_std"],
fmt="^:",
color="tab:orange",
label="perturbation relative error mean +- std",
)
ax2.tick_params(axis="y", labelcolor=color)
ax2.legend(
loc="upper right",
bbox_to_anchor=(0.5, -0.07),
fancybox=True,
shadow=True,
handlelength=4,
)
ax1.legend(
loc="upper right",
bbox_to_anchor=(.9, -0.07),
fancybox=True,
shadow=True,
handlelength=4,
)
# finalize
fig.tight_layout()
plt.title(name + " " + str(min(list(data["Ks"]))) + "-" + str(max(list(data["Ks"]))))
plt.ioff()
# save
if plot_final:
plt.savefig(
os.path.join(f'{path}', f'FINAL_k={min(list(data["Ks"]))}-{max(list(data["Ks"]))}.png'),
bbox_inches="tight",
)
else:
plt.savefig(
os.path.join(f'{path}', f'k={min(list(data["Ks"]))}-{max(list(data["Ks"]))}.png'),
bbox_inches="tight",
)
plt.close("all")
[docs]
def plot_SymNMFk(data, name, path, plot_final=False):
pac = False
if "pac" in data and len(data["pac"]) > 0:
pac = True
fig, ax1 = plt.subplots(figsize=(8, 8), dpi=80)
# silhouette
color = "black"
ax1.set_xlabel("latent dimension")
ax1.set_ylabel("PAC", color=color)
# add a vertical line for xtick k-values to make it easier to see which point corresponds to which k
if not isinstance(data["pac"], np.float64): # if plot contains more than one k-value
for xtick in ax1.get_xticks():
if xtick in data["Ks"]:
y = data["pac"][np.where(data["Ks"] == xtick)[0][0]] # get the y value that corresponds to xtick
plt.vlines(xtick, min(data["pac"] + [0]), y, colors='black', alpha=0.4)
# pac
color = "black"
ax1.plot(
list(data["Ks"]),
data["pac"],
linestyle="--",
marker="s",
color=color,
label="PAC",
)
ax1.set_ylim(min(0, np.min(data["pac"])), 1)
ax1.tick_params(axis="y", labelcolor=color)
# legend
ax1.legend(
loc="upper left",
bbox_to_anchor=(0.5, -0.07),
fancybox=True,
shadow=True,
)
# relative error
ax2 = ax1.twinx()
if set(data["err_mean"]) != set([0.0]):
color = "tab:blue"
ax2.set_ylabel("Objective", color=color)
ax2.plot(
list(data["Ks"]),
data["err_mean"],
"o-",
color=color,
label="Objective",
)
ax2.tick_params(axis="y", labelcolor=color)
ax2.legend(
loc="upper right",
bbox_to_anchor=(0.5, -0.07),
fancybox=True,
shadow=True,
)
# finalize
fig.tight_layout()
plt.title(name + " " + str(min(list(data["Ks"]))) + "-" + str(max(list(data["Ks"]))))
plt.ioff()
# save
if plot_final:
plt.savefig(
os.path.join(f'{path}', f'FINAL_k={min(list(data["Ks"]))}-{max(list(data["Ks"]))}.png'),
bbox_inches="tight",
)
else:
plt.savefig(
os.path.join(f'{path}', f'k={min(list(data["Ks"]))}-{max(list(data["Ks"]))}.png'),
bbox_inches="tight",
)
plt.close("all")
[docs]
def plot_BNMFk(Ks, sils, bool_err, path=None, name=None):
fig, ax1 = plt.subplots(figsize=(8, 8), dpi=80)
plt.rcParams['svg.fonttype'] = 'none'
color = 'tab:red'
ax1.set_xlabel('latent dimension')
ax1.set_ylabel('silhouette', color=color)
ax1.plot(Ks, sils, 'o-', color=color)
ax1.tick_params(axis='y', labelcolor=color)
ax2 = ax1.twinx()
color = 'tab:blue'
ax2.set_ylabel('boolean relative error', color=color)
ax2.plot(Ks, bool_err, '^-', color=color, label='bool_err')
ax2.tick_params(axis='y', labelcolor=color)
plt.title(str(name) + " " + str(min(list(Ks))) + "-" + str(max(list(Ks))))
fig.tight_layout()
plt.ioff()
if path is not None:
plt.savefig(
os.path.join(f'{path}', f'k={min(list(Ks))}-{max(list(Ks))}.png'),
bbox_inches="tight",
)
plt.close("all")
return None
[docs]
def plot_NMFk(
data,
k_predict,
name, path,
plot_predict=False,
plot_final=False,
simple_plot=False,
calculate_error=True,
Ks_not_computed=[]
):
pac = False
if "pac" in data and len(data["pac"]) > 0:
pac = True
fig, ax1 = plt.subplots(figsize=(12, 8), dpi=100)
# silhouette
color = "tab:red"
ax1.set_xlabel("latent dimension")
if pac:
ax1.set_ylabel("silhouette - pac", color="black")
else:
ax1.set_ylabel("silhouette", color=color)
# W sill
ax1.plot(
list(data["Ks"]),
data["sils_min_W"],
"o-",
color=color,
label="W minimum silhouette",
)
# H sill
ax1.plot(
list(data["Ks"]),
data["sils_min_H"],
"o-.",
color="purple",
label="H minimum silhouette",
)
# add a vertical line for xtick k-values to make it easier to see which point corresponds to which k
if not isinstance(data["sils_min_W"], np.float64): # if plot contains more than one k-value
for xtick in ax1.get_xticks():
if xtick in data["Ks"]:
y = data["sils_min_W"][np.where(data["Ks"] == xtick)[0][0]] # get the y value that corresponds to xtick
plt.vlines(xtick, min([0, np.min(data["sils_min_H"]), np.min(data["sils_min_W"])]), y, colors='black', alpha=0.4)
for empty_k in Ks_not_computed:
plt.vlines(empty_k, ymin=min([0, np.min(data["sils_min_H"]), np.min(data["sils_min_W"])]), ymax=1, colors='black', linewidth=2, alpha=0.9)
if not simple_plot:
ax1.errorbar(
list(data["Ks"]),
data["sils_mean_W"],
yerr=data["sils_std_W"],
fmt="^:",
color="tab:green",
label=r"W mean +- std silhouette",
)
ax1.errorbar(
list(data["Ks"]),
data["sils_mean_H"],
yerr=data["sils_std_H"],
fmt="^-.",
color="tab:green",
label=r"H mean +- std silhouette",
)
# pac
if pac:
color = "black"
ax1.plot(
list(data["Ks"]),
data["pac"],
linestyle="--",
marker="s",
color=color,
label="PAC",
)
ax1.set_ylim(min([0, np.min(data["sils_min_H"]), np.min(data["sils_min_W"]), np.min(data["pac"])]), 1)
else:
ax1.set_ylim(min([0, np.min(data["sils_min_H"]), np.min(data["sils_min_W"])]), 1)
ax1.tick_params(axis="y", labelcolor=color)
# k prediction
if plot_predict:
ax1.axvline(
x=list(data["Ks"])[list(data["Ks"]).index(k_predict)],
lw=5,
alpha=0.8,
color="lightsteelblue",
label="K Predict= " + str(k_predict),
)
# legend
ax1.legend(
loc="upper left",
bbox_to_anchor=(0.5, -0.07),
fancybox=True,
shadow=True,
)
# relative error
if calculate_error:
ax2 = ax1.twinx()
color = "tab:blue"
ax2.set_ylabel("relative error", color=color)
ax2.plot(
list(data["Ks"]),
data["err_reg"],
"o-",
color=color,
label="regression relative error",
)
if not simple_plot:
ax2.errorbar(
list(data["Ks"]),
data["err_mean"],
yerr=data["err_std"],
fmt="^:",
color="tab:orange",
label="perturbation relative error mean +- std",
)
ax2.tick_params(axis="y", labelcolor=color)
ax2.legend(
loc="upper right",
bbox_to_anchor=(0.5, -0.07),
fancybox=True,
shadow=True,
handlelength=4,
)
ax1.legend(
loc="upper right",
bbox_to_anchor=(.9, -0.07),
fancybox=True,
shadow=True,
handlelength=4,
)
# finalize
fig.tight_layout()
plt.title(name + " " + str(min(list(data["Ks"]))) + "-" + str(max(list(data["Ks"]))))
plt.ioff()
# save
if plot_final:
if len(Ks_not_computed) > 0:
kmin = min(min(list(data["Ks"])), min(list(Ks_not_computed)))
kmax = max(max(list(data["Ks"])), max(list(Ks_not_computed)))
else:
kmin = min(list(data["Ks"]))
kmax = max(list(data["Ks"]))
plt.savefig(
os.path.join(f'{path}', f'FINAL_k={kmin}-{kmax}.png'),
bbox_inches="tight",
)
else:
plt.savefig(
os.path.join(f'{path}', f'k={min(list(data["Ks"]))}-{max(list(data["Ks"]))}.png'),
bbox_inches="tight",
)
plt.close("all")
[docs]
def plot_consensus_mat(C, figname):
plt.figure()
try:
plt.imshow(C)
plt.colorbar()
plt.savefig(figname)
except:
pass
plt.close("all")
[docs]
def plot_cophenetic_coeff(Ks, coeff, figname):
plt.figure()
plt.plot(Ks, coeff)
plt.xlabel('k')
plt.ylabel('Cophenetic Correlation')
plt.savefig(figname)
plt.close("all")