RZV

This routine is used to ratio zone the region of space spanned by the input number n~i~ of copies of the input vector v~ij~ away from the initial point v~0j~ using the desired coordinate system. No attempt is made to insure that the 3 vectors are independent.

For ratio_method = component (default), the j-th component of the i-th vector v~ij~ is reduced by  r~ij ~ after the k~i~ -th

step in the i-th direction away from the initial point.  For this ratio_method the ratio flags f~i~ are not used.  In this case an initial step of 1 for the j-th component of the i-th direction would become, for r~ij ~ =  1/2, a step of the j-th component of the i-th direction of 1/2 at k~i~ =  1, 1/4 at  k~i~ =  2, 1/8 at  k~i~ =  3, 1/16 at k~i~ =  4,etc.

For ratio_method = vector and fj =1 (the default), the j-th vecor is reduced by r~ij ~ after the k~i~ -th step in the i-th direction.  In this case an initial step of 1 in the j-th direction would become, for  r~ij ~ =  1/2, a setp in the j-th direction of 1/2 at k~i~ =  1, 1/4 at  k~i~ =  2, 1/8 at  k~i~ =  3, 1/16 at k~i~ =  4,etc.

For ratio_method = vector and fj =0, the j-th vecor is reduced by [1 - (1-r~ij ~ ) *2/(k~i~ +  1)] after the k~i~ -th step in the i-th direction.  In this case an initial step of 1 in the j-th direction would become, for  r~ij ~ =  1/2, a step in the j-th direction of 1/2 at k~i~ =  1, 1/3 at  k~i~ =  2, 1/4 at  k~i~ =  3, 1/5 at k~i~ =  4,etc.

FORMAT:

rzv/xyz rtz rtp /

[ n1,n2,n3

/v11,v12,v13/v21,v22,v23/v31,v32,v33

/v01,v02,v03

/r11,r12,r13/r21,r22,r23/r31,r32,r33

/component vector

/f1,f2,f3]

default = xyz

default = 0:      n~i~, v~i~, v~0j~

default = 1:      r~ij~

default = component

EXAMPLES:

spiral of points

rzv/rtz/n1,0,0/.1,10.,1/ , , / , , / , , /1.1,1,.9

sc (simple cubic) point distribution

rzv/xyz/n1,n2,n3/1,0,0/0,1,0/0,0,1

same as

rz/xyz/n1+1,n2+1,n3+1/0,0,0/n1,n2,n3/1,1,1

bcc (body centered cubic) point distribution

rzv/xyz/n1,n2,n3/.5,.5,.5/.5,.5,-.5/.5,-.5,-.5/

compare the two command sequence (different bounding box)

rz/xyz/n1+1,n2+1,n3+1/0,0,0/n1,n2,n3/1,1,1
rz/xyz/n1  ,n2  ,n3  /0,0,0/n1,n2,n3/0,0,0

fcc (face centered cubic) point distribution

rzv/xyz/n1,n2,n3/.5,.5,0/0,.5,.5/.5,0,.5/

compare the four command sequence (different bounding box)

rz/xyz/n1+1,n2+1,n3+1/0,0,0/n1,n2,n3/1,1,1
rz/xyz/n1  ,n2  ,n3+1/0,0,0/n1,n2,n3/0,0,1
rz/xyz/n1  ,n2+1,n3  /0,0,0/n1,n2,n3/0,1,0
rz/xyz/n1+1,n2  ,n3  /0,0,0/n1,n2,n3/1,0,0

hexagonal lattice of points in x,y plane, repeated in z direction

rzv/xyz/n1,n2,n3/1,0,0/.5,0.866,0/0,0,1

diamond point distribution (two command sequence)

rzv/xyz/n1,n2,n3/.5,.5,0/0,.5,.5/.5,0,.5     rzv/xyz/n1,n2,n3/.5,.5,0/0,.5,.5/.5,0,.5/.25,.25,.25

compare the eight command sequence (different bounding box)

rz/xyz/n1+1,n2+1,n3+1/0,0,0/n1,n2,n3/1,1,1     rz/xyz/n1  ,n2  ,n3+1/0,0,0/n1,n2,n3/0,0,1     rz/xyz/n1  ,n2+1,n3  /0,0,0/n1,n2,n3/0,1,0     rz/xyz/n1+1,n2  ,n3  /0,0,0/n1,n2,n3/1,0,0
rz/xyz/n1+1,n2+1,n3+1/0.25,0.25,0.25/n1+.25,n2+.25,n3+.25/1,1,1
rz/xyz/n1  ,n2  ,n3+1/0.25,0.25,0.25/n1+.25,n2+.25,n3+.25/0,0,1
rz/xyz/n1  ,n2+1,n3  /0.25,0.25,0.25/n1+.25,n2+.25,n3+.25/0,1,0
rz/xyz/n1+1,n2  ,n3  /0.25,0.25,0.25/n1+.25,n2+.25,n3+.25/1,0,0

hcp (hexagonal close pack) point distribution  (two command sequence)

rzv/xyz/n1,n2,n3/1,0,0/.5,0.866,0/0,0,1/
rzv/xyz/n1,n2,n3/1,0,0/.5,0.866,0/0,0,1/.5,0.2,.5

nice 2-d distribution of points in a circle of radius 1

rzv/xyz/10,60,0/0.1,0,0/0,60,0/0,0,1/0,0,0/1,0.5,1/1,1,1/1,1,1/vector/0,0,0

CAVEATS::