This command is deprecrated, see CREATEPTS.
This routine is used to ratio zone the region of space spanned by the input number n(i) of copies of the input vector v(ij) away from the initial point v(0j) using the desired coordinate system. The j-th component of the i-th vector V(ij) is reduced by r(ij) at each step in the i-th direction away from the initial point. No attempt is made to insure that the 3 vectors are independent.
rzv/[ xyz rtz rtp / & [ n1,n2,n3 & /v11,v12,v13/v21,v22,v23/v31,v32,v33 & /v01,v02,v03 & /r11,r12,r13/r21,r22,r23/r31,r32,r33 ] & / component or vector & / [f1,f2,f3]
For ratio_method
= component (default), the j-th component of the
i-th vector vij is reduced by rij after the ki-th
step in the i-th direction away from the initial point. For this
ratio_method the ratio flags f1,f2,f3
are not used. In this case an
initial step of 1 for the j-th component of the i-th direction would
become, for rij = 1/2, a step of the j-th component of the i-th
direction of 1/2 at ki = 1, 1/4 at ki = 2, 1/8 at ki = 3, 1/16 at ki = 4,etc.
For ratio_method
= vector and fj
=1 (the default), the j-th vecor
is reduced by rij after the ki -th step in the i-th direction.
In this case an initial step of 1 in the j-th direction would
become, for rij = 1/2, a setp in the j-th direction of 1/2 at
ki = 1, 1/4 at ki = 2, 1/8 at ki = 3, 1/16 at ki = 4,etc.
For ratio_method
= vector and fj
=0, the j-th vecor is reduced by
[1 - (1-rij ) *2/(ki + 1)] after the ki -th step in the i-th direction. In this case an initial step of 1 in the j-th
direction would become, for rij = 1/2, a step in the j-th direction of 1/2 at ki = 1, 1/3 at ki = 2, 1/4 at ki = 3, 1/5 at ki = 4,etc.
default = xyz
default = 0: ni, vi, v0j
default = 1: rij
default = component
rzv/rtz/n1,0,0/.1,10.,1/ , , / , , / , , /1.1,1,.9
spiral of points
rzv/xyz/n1,n2,n3/1,0,0/0,1,0/0,0,1
rz/xyz/n1+1,n2+1,n3+1/0,0,0/n1,n2,n3/1,1,1
simple cubic point distribution, both lines have the same result
rzv/xyz/n1,n2,n3/.5,.5,.5/.5,.5,-.5/.5,-.5,-.5/
rz/xyz/n1+1,n2+1,n3+1/0,0,0/n1,n2,n3/1,1,1
rz/xyz/n1 ,n2 ,n3 /0,0,0/n1,n2,n3/0,0,0
body centered cubic point distribution, compare with the rz two command sequence with different bounding box.
rzv/xyz/n1,n2,n3/.5,.5,0/0,.5,.5/.5,0,.5/
rz/xyz/n1+1,n2+1,n3+1/0,0,0/n1,n2,n3/1,1,1
rz/xyz/n1?| ,n2?| ,n3+1/0,0,0/n1,n2,n3/0,0,1
rz/xyz/n1?| ,n2+1,n3?| /0,0,0/n1,n2,n3/0,1,0
rz/xyz/n1+1,n2?| ,n3?| /0,0,0/n1,n2,n3/1,0,0
face centered cubic point distribution compare with the four rz command sequence (different bounding box).
rzv/xyz/n1,n2,n3/1,0,0/.5,0.866,0/0,0,1
hexagonal lattice of points in x,y plane, repeated in z direction
rzv/xyz/n1,n2,n3/.5,.5,0/0,.5,.5/.5,0,.5
rzv/xyz/n1,n2,n3/.5,.5,0/0,.5,.5/.5,0,.5/.25,.25,.25
rz/xyz/n1+1,n2+1,n3+1/0,0,0/n1,n2,n3/1,1,1
rz/xyz/n1?| ,n2?| ,n3+1/0,0,0/n1,n2,n3/0,0,1
rz/xyz/n1?| ,n2+1,n3?| /0,0,0/n1,n2,n3/0,1,0
rz/xyz/n1+1,n2?| ,n3?| /0,0,0/n1,n2,n3/1,0,0
rz/xyz/n1+1,n2+1,n3+1/0.25,0.25,0.25/n1+.25,n2+.25,n3+.25/1,1,1
rz/xyz/n1?| ,n2?| ,n3+1/0.25,0.25,0.25/n1+.25,n2+.25,n3+.25/0,0,1
rz/xyz/n1?| ,n2+1,n3?| /0.25,0.25,0.25/n1+.25,n2+.25,n3+.25/0,1,0
rz/xyz/n1+1,n2?| ,n3?| /0.25,0.25,0.25/n1+.25,n2+.25,n3+.25/1,0,0
diamond point distribution (two command sequence) compare the eight rz command sequence (different bounding box).
rzv/xyz/n1,n2,n3/1,0,0/.5,0.866,0/0,0,1/
rzv/xyz/n1,n2,n3/1,0,0/.5,0.866,0/0,0,1/.5,0.2,.5
hexagonal close pack point distribution?| (two command sequence)
rzv/xyz/10,60,0/0.1,0,0/0,60,0/0,0,1/0,0,0/1,0.5,1/1,1,1/1,1,1/vector/0,0,0
nice 2-d distribution of points in a circle of radius 1
CAVEATS::